SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

M.Sc. END SEMESTER EXAMINATION APRIL/NOV - 2021

SEMESTER - I

14PAMCT1A02 - Real Analysis

Total Duration : 3 Hrs		Total Marks : 75
MCQ	: 30 Mins	MCQ : 15
Descriptive	: 2 Hrs.30 Mins	Descriptive : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Let f be a measurable function and ${\rm B}$ a Borel set. Prove that f^{-1} is a measurable set.
- 2. Show that there exist uncountable sets of zero measure.
- 3. Show that if f is a non-negative measurable function, then f=0 a.e. if, and only if, f dx = 0.
- 4. Prove that $\lim_{x \to \infty} \int_0^\infty \frac{\mathrm{d}x}{\left(1+\frac{x}{2}\right)^n x^{1/n}} = 1$.
- 5. Suppose K is compact, (a){ f_n } is a sequence of continuous functions on K (b){ f_n } converges pointwise to a continuous function f on K (c) $f_n(x) \ge f_{n+1}(x)$ for all x K, n = 1, 2, 3, ...

then prove that f_n to f uniformly on K.

6. Suppose f maps a convex open set $E \subset R^n$ into R^m , f is differentiable in E, and there is a real number M such that $\|\mathbf{f}'(\mathbf{x})\| \leq \mathbf{M}$ for every $\mathbf{x} \in \mathbf{E}$, then prove that $|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})| \leq \mathbf{M} |\mathbf{b} - \mathbf{a}|$ for all $\mathbf{a} \in \mathbf{E}$, and $\mathbf{b} \in \mathbf{E}$

7. Given a double sequence $\{a_{ij}\}$, i = 1, 2, 3, ..., j = 1, 2, 3, ... Suppose that $\sum_{i=1}^{\infty} |a_{ij}| = b_i$, $\mathsf{i} = \mathsf{1}, \mathsf{2}, \mathsf{3} \dots \mathsf{and} \ \sum \mathbf{b_i} \ \mathsf{converges.} \ \mathsf{Prove that} \ \sum_{i=1}^\infty \sum_{j=1}^\infty \mathbf{a}_{ij} = \ \sum_{i=1}^\infty \sum_{i=1}^\infty \mathbf{a}_{ij} \ .$

8. f , for some x there are constants $\delta > 0$ and $M < \infty$ such that $|f(x+t) - f(x)| \le \delta < 0$ $\mathbf{M} |\mathbf{t}|$ for all $\mathbf{t} \in (-\delta, \delta)$ then prove that $\lim_{\mathbf{n} \to \infty} \mathbf{S}_{\mathbf{N}} (\mathbf{f}; ; \mathbf{x}) = \mathbf{f}(\mathbf{x})$.

Contd...

Section C

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. Prove that every interval is measurable.
- 10. State and Prove Fatou's Lemma.
- 11. State and Prove Stone-Weierstrass theorem.
- 12. If f is a positive function on $0,\infty$ such that

(a) f(x+1) = x f(x) (b) f 1 (=1) (c) log f is convex , then prove that f(x) = Γ (x).

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Prove that the class M is a σ -algebra.