SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with A+ Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATION APRIL/NOV - 2021 SEMESTER – IV 17PAMCE4A05 – Operations Research

Total Duration : 3 hrs		Total Mark : 75
MCQ	: 30 min	MCQ : 15
Descriptive	: 2 Hrs. 30 Mins.	Descriptive : 60

Section B	
Answer any Six questions	(6 x 5 =30)

- 1. Write the dual of the following LP problem. Minimize $Z = 3x_1 - 2x_2 + 4x_3$ subject to the constraints (*i*) $3x_1 + 5x_2 + 4x_3 \ge 7$ (*ii*) $6x_1 + x_2 + 3x_3 \ge 4$ (*iii*) $7x_1 - 2x_2 - x_3 \le 10$ (*iv*) $x_1 - 2x_2 + 5x_3 \ge 3$ (*iv*) $4x_1 + 7x_2 - 2x_3 \ge 2$ and $x_1, x_2, x_3 \ge 0$.
- 2. Use dynamic programming to solve the following problem Minimize $Z = y_1^2 + y_2^2 + y_3^2$ subject to the constraints $y_1 + y_2 + y_3 \ge 15$ and $y_1, y_2, y_3 \ge 0$.
- 3. Solve the following LPP by dynamic programming approach Maximize Z = 8x₁ + 7x₂ subject to the constraints
 (i) 2x₁ + x₂ ≤ 8 (*ii*) 5x₁ + 2x₂ ≤ 15 and x₁, x₂ ≥ 0.
- 4. Explain in detail about the factors involved in inventory problem analysis.
- 5. Describe the Inventory control models with shortages (EOQ model with constant demand and fixed reorder cycle time).
- 6. In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day. Assuming that the inter arrival time follows an exponential distribution and the service time (the time taken to hump a train) distribution is also exponential with an average of 36 minutes. Calculate: (a) expected queue size (line length) (b) probability that the queue size exceeds 10.
- 7. Find the second order Taylor's series approximation of the function $f(x_1, x_2) = x_1^2 x_2 + 5x_1 e^{x_2}$ about the point $x_0 = [1,0]^T$.

Contd...

8. Find the optimum value of the objective function (by using Kuhn-Tucker method)

Maximize $Z = 10x_1 - x_1^2 + 10x_2 - x_2^2$ subject to the constraints (i) $x_1 + x_2 \le 8$ (ii) $-x_1 + x_2 \le 5x_1, x_2 \ge 0$.

Section C Part A Answer any *Two* questions (2x 10 = 20)

- 9. Use the revised simplex method to solve the following LPP Maximize Z = 6x₁ 2x₂ + 3x₃ subject to the constraints (i) 2x₁ x₂ + 2x₃ ≤ 2 (ii) x₁ + 4x₃ ≤ 4 and x₁, x₂, x₃ ≥ 0.
- 10.Describe the single item inventory control models without shortages (EOQ model with constant rate of demand) with suitable diagram.
- 11.Explain in detail about the structure of a queuing system.
- 12.Use the Wolfe's method to solve the quadratic programming problem Maximize Z = 2x₁ + x₂ - x₁² subject to the constraints (i) 2x₁ + 3x₂ ≤ 6 (ii) 2x₁ + x₂ ≤ 4x₁, x₂ ≥ 0.

Part B

Compulsory Question $(1 \times 10 = 10)$

13.Use dynamic programming to show that $p_1 \log p_1 + p_2 \log p_2 + \dots + p_n \log p_n$ subject to constraints $p_1 + p_2 + \dots + p_n = 1$ and $p_i \ge 0$ $(i = 0, 1, 2, \dots n)$ is minimum when $p_1 = p_2 = p_3 = \dots = p_n = 1/n$.