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      Section B            

Answer any SIX questions       (6 x 5 =30)                                                                                            

1.     Let X and Y be independent and identically distributed random variables, and   
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         then Prove that X and Y are geometric random variables. 

2.      Let (X1,X2) have uniform distribution on the triangle }10{ 21  xx ; that is,   

          (X1,X2) has       

          joint density function 
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3.        Prove that the bivariate binomial distribution generated by E1 has joint   

           probability mass function. 

 

4.        Let ),(.~ nmFX .  Then, for k>0, integral, Prove that  
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6.       State and Prove Slutsky’s theorem 

7.       Let F be any distribution function, and let X be a U[0,1] random variable.   

          Then prove that there exists a function h such that h(X) has distribution   

          function F, that is  ).,()(})({  xxFxXhP  
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Section C 

Part A           

Answer any TWO questions       (2 x 10 =20) 

         
9.      Define Gamma distribution with parameters   and  . Also compute Marginal Generating          

          Function, Mean, Variance and E[X
n
] of the gamma distribution. 

 

10.     Let X1,X2 be independent random variables with common density given by 

Find Jacobian of the transformation, joint density of Y1,Y2 and the 

marginal probability density functions of Y1 and Y2 

11.      Explain Bivariate Poisson distribution. 

12.       Let X1,X2,….Xn be independent and identically distributed  2,N random variables.     

            Then prove that X and ),...,,( 321 XXXXXXXX n  are independent. Also Prove            

             that ).1(/)1( 222  nisSn   

 

Part B  

Compulsory Question                  (1 x 10 = 10) 

13.      State and Prove Lindeberg - Levy Central Limit theorem. 
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