SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with A+ Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATION APRIL/NOV - 2021 SEMESTER – I 17PAMCE1001 – Probability and Distributions

Total Duration : 3 hrs		Total Mark : 75
MCQ	: 30 min	MCQ : 15
Descriptive	: 2 Hrs. 30 Mins.	Descriptive : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30)$

1. Let X and Y be independent and identically distributed random variables, and let $P{X = k} = p_k > 0, k = 0, 1, 2, 3, ...$ If

 $P\{X = t / X + Y = t\} = P\{X = t - 1 / X + Y = t\} = \frac{1}{t+1}, t \ge 0$

then Prove that X and Y are geometric random variables.

2. Let (X_1, X_2) have uniform distribution on the triangle $\{0 \le x_1 \le x_2 \le 1\}$; that is, (X_1, X_2) has

joint density function $f(x_1, x_2) = \begin{cases} 2, 0 \le x_1 \le x_2 \le 1\\ 0, elsewhere. \end{cases}$ Find the density function of Y.

- 3. Prove that the bivariate binomial distribution generated by E_1 has joint probability mass function.
- 4. Let $X \sim F(m, n)$. Then, for k>0, integral, Prove that

(i)
$$E[X^{k}] = \left(\frac{n}{m}\right)^{k} \frac{\Gamma[k + (m/2)]\Gamma[(n/2) - k]}{\Gamma[(m/2)\Gamma(n/2)]} \text{ for } n \ge 2k \text{ (ii) } E[X] = \frac{n}{n-2}, n > 2$$

(iii) $\operatorname{var}(X) = \frac{n^{2}(2m+2n-4)}{m(n-2)^{2}(n-4)}, n > 4$

5. If
$$X_n \xrightarrow{r} X$$
 then prove that $E|X_n|^r \to E|X|^r$.

- 6. State and Prove Slutsky's theorem
- 7. Let F be any distribution function, and let X be a U[0,1] random variable. Then prove that there exists a function h such that h(X) has distribution function F, that is $P{h(X) \le x} = F(x) \forall x \in (-\infty, \infty)$.

8. Prove that
$$X_n \xrightarrow{a.s} X \Longrightarrow X_n \xrightarrow{P} X$$
.

Contd...

Section C

Part A Answer any **TWO** questions $(2 \times 10 = 20)$

- 9. Define Gamma distribution with parameters α and β . Also compute Marginal Generating Function, Mean, Variance and $E[X^n]$ of the gamma distribution.
- 10. Let X_1, X_2 be independent random variables with common density given by

 $f(x) = \begin{cases} 1, & if \ 0 < x < 1 \\ 0, & Otherwise \end{cases}$ Find Jacobian of the transformation, joint density of Y₁, Y₂ and the marginal probability density functions of Y₁ and Y₂

- 11. Explain Bivariate Poisson distribution.
- 12. Let $X_1, X_2, ..., X_n$ be independent and identically distributed $N(\mu, \sigma^2)$ random variables. Then prove that \overline{X} and $(X_1 - \overline{X}, X_2 - \overline{X}, X_3 - \overline{X}, ..., X_n - \overline{X})$ are independent. Also Prove that $(n-1)S^2/\sigma^2 is\chi^2(n-1)$.

Part B

Compulsory Question $(1 \times 10 = 10)$

13. State and Prove Lindeberg - Levy Central Limit theorem.