SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

M.Sc. - END SEMESTER EXAMINATIONS APRIL - 2022

SEMESTER - II

14PAMCT2A05 & PAM/CT/2A05 - **Topology**

Total Duration : 3 Hrs.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. If f and g are continuous real functions defined on a metric space X, then prove that f+g and α f are also continuous, α is any real number.
- 2. Let X be a second countable space. Prove that any open base for X has countable subclass which is also an open base.
- 3. Prove that any sequentially compact metric space is totally bounded.
- 4. Prove that every compact Hausdroff space is normal.
- 5. Prove that the components of a totally disconnected space are its points.
- 6. Let X be a topological space and A a subset of X. Then prove that (a) $\bar{A} = A \cup D(A)$
 - (b) A is closed if and only if $A \supseteq D(A)$.
- 7. State and prove Lindelof's theorem.
- 8. Let X be a topological space and A be a subset of X. Then prove that $\overline{A} = \{x: \text{Each neighbourhood of } x \text{ intersects } A\}$

Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. Let X and Y be metric spaces and f a mapping of X into Y. Prove that f is continuous at x_0 , if and only if $x_n \rightarrow x_0 \Rightarrow f(x_n) \rightarrow f(x_0)$.
- 10. Prove that every separable metric space is second countable.
- 11. State and prove Tychnoff's Theorem.
- 12. State and prove Urysohn's Lemma.

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Prove that a subspace of a real line R is connected if and only if it is an interval.
