SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. - END SEMESTER EXAMINATIONS APRIL - 2022 SEMESTER - IV 20PAMCT4010 - Functional Analysis

Total Duration : 3 Hrs.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. 1. Let N and N' be normed linear space and T linear transformation of N into N'then the following conditions on T are equivalent to one another
 - a. T is continuous
 - b. T is continuous at origins in the sense that $x_n \rightarrow 0 \implies T(x_n) \rightarrow 0$

c. there exists a real number $K \ge 0$ with the property that

 $\|T x\| \le k \| X \|$ forever $x \in N$

d. if S =x : $||x|| \le 1$ is the closed square in N then its image T(S) is bounded set in N'

- 2. State and prove uniform boundedness theorem
- 3. Prove that the adjoint operator $T \rightarrow T^*$ on B(H) has the following properties a. $(T_1 + T_2)^* = T_1^* + T_2^*$
 - b. $(\alpha T)^* = \overline{\alpha} T^*$

c.
$$(T_1T_2)^* = T_2^*T_1^*$$

d.
$$T^{**} = T$$

e.
$$\|\mathsf{T}^*\| = \|\mathsf{T}\|$$

- f. $||T^*T|| = ||T||^2 = ||TT^*||$
- 4. In Banach algebra prove that The mapping $x \rightarrow x^{-1}$ of G into G is continuous and it is therefore a homomorphism of G onto itself.
- 5. Prove that if f_1 and f_2 are multiplicative functionals on A with the small null space then $f_1=f_2$
- 6. State and prove open mapping theorem
- 7. State and prove Bessel's inequality
- 8. Let M be a closed linear subspace of a normed linear space N.If the norm of a coset x + M in the quotient space N/M is defined by

 $\| x+M\| = \inf \{\| x+M\| : m \in M\}$ then prove that N/M is a normed linear space. Further if N is a Banach space then so is N/M

Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. If M and N are closed linear subspace of a Hilbert space H such that $M \perp N$, then the linear subspace M + N is also closed also prove that M is close linear subspace of a Hilbert space H then $H = M \oplus M^{\perp}$
- 10. If N₁ and N₂ are normal operators on H with the property that either commutes with the adjoint of the other then prove that N₁+ N₂ and N₁N₂ are normal also prove that an operator T on H is normal $\iff ||T^*x|| = ||Tx||$ for every x and $||T2|| = ||T||^2$
- 11. Prove that following in Banach Algebra
 - a. If r is an element of R then 1 r left regular
 - b. If r is an element of R then 1 r regular
 - c. If r is an element of R then 1 –x r regular for every x

d. If r is an element of Awith the property that 1 –xrregular for every x then r is in R

12. State and prove Gelfand- Neumark theorem .

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Let M be a linear subspace of a normed linear space N and let f be a functional defined on M. if x_0 is a vector not in M and if $M_0 = M + [x_0]$ is the linear subspace spanned by M and x_0 , then show that f can be extended to a functional f_0 defined on M_0 such that $|| f_0 || = || f ||$
