SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. - END SEMESTER EXAMINATIONS APRIL - 2022 SEMESTER - I 20PAMET1001 - Probability and Distributions

Total Duration : 3 Hrs.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Let X be a nonnegative integer-valued RV satisfying $P{X>m+1|X>m}=PX \ge 1$ for any nonnegative integer m. Indentify X must have a geometric distribution
- Let X and Y be independent RVs and f and g be Borel-measurable functions. Predict f(X) and g(Y) are also independent.
- 3. Interpret Cov (X, Y) = $\rho\sigma_1\sigma_2$.
- 4. Let X ~ F(m, n).Show, for k > 0, integral, $\mathsf{EX}^k = \left(\frac{n}{m}\right)^k \frac{\Gamma[k + (m/2)]\Gamma[(n/2) k]}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})}$ for n>2k and EX= n / n - 2, n > 2.
- 5. Let $X_n \xrightarrow{P} X$, and g be a continuous function defined on \mathcal{R} . Apply $g(X_n) \xrightarrow{P} g(X)$ as $n \to \infty$.
- 6. Solve the RV ${\rm X}_{(k)}$ has a beta distribution with parameters $\alpha = {\rm k}$ and $\beta = {\rm n} {\rm k}$ + 1.
- 7. Compute X and Y are independent RVs if and only if M $(t_1, t_2) = M (t_1, 0) M (0, t_2)$ for all t_1, t_2 in \mathcal{R} .
- 8. Let {X_n, Y_n}, n = 1, 2, ..., be sequence of RVs . Determine $|X_n Y_n| \xrightarrow{P} 0$ and $Y_n \xrightarrow{L} Y \Rightarrow X_n \xrightarrow{L} Y$.

Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. Let F be any DF, and let X be a U [0, 1] RV. Describe there exists function h such that h(X) has DF, that is P{ $h(X) \le x$ } = F(x) for all $x \in (-\infty, \infty)$.
- 10. Let (X, Y) be jointly distributed with density function

$$f(x,y) = \begin{cases} x + y & 0 < x < 1, 0 < y < 1 \\ 0 & otherwise \end{cases}$$

Examine the correlation coefficient ρ of X and Y.

Contd...

- 11. Let $(X_1, X_2, ..., X_n)$ be an n-dimensional RV with a normal distribution. Let Y_1 , Y_2 , ..., Y_k , $k \le n$, be linear functions of Xj (j = 1, 2, ..., n). Classify (Y₁, Y₂, ..., Y_k) also has a multivariate normal distribution.
- 12. Let X₁, X₂, ..., X_n be i.i.d N(μ , σ^2) RVs. Deduce X₁ \bar{X} ,X₂ \bar{X} ,...,X_n - \bar{X} are independent.

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Justify Lindeberg-Levy Central Limit Theorem.
