SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. - END SEMESTER EXAMINATIONS APRIL - 2022 SEMESTER - I 20PAMCT1002 - Real Analysis

Total Duration : 3 Hrs.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Indicate for any sequence of sets $\{\mathsf{E}_i\},\mathsf{m}^*$ $(\cup_{i=1}^{\infty}\mathsf{E}_i) \leq \sum_{i=1}^{\infty}\mathsf{m}^*$ (E_i) .
- 2. Apply Lebesgue's Dominated Convergence Theorem.
- 3. Let α be monotonically increasing on [a, b]. Suppose f_n∈ℜ(α) on [a, b], for n = 1, 2, 3,..., and suppose f_n→f uniformly on [a, b]. Describe f∈ℜ(α) on [a, b] and ∫_a^b fdα = lim_{n→∞} ∫_a^b f_ndα.
- 4. If X is a complete metric space, and if ϕ is a contraction of X into X, interpret there exists one and only one $x \in X$ such that $\phi(x) = x$.
- 5. Suppose a_0 , a_1 ,..., a_n are complex numbers, $n \ge 1$, an $\ne 0$, $P(z) = \sum_{k=0}^{n} a_k z^k$. Compute P(z) = 0 for some complex number z.
- 6. Let {fn} be a sequence of measurable functions defined on the same measurable set. Classify
 - (i) sup $1 \leq i \leq n f_i$ is measurable for each n,
 - (ii) inf $1 \leq i \leq n f_i$ is measurable for each n,
 - (iii) sup f_n is measurable,
 - (iv) inf f_n is measurable,
- 7. If f is Riemann integrable and bounded over the finite interval [a, b], show f is integrable and R $\int_a^b f dx = \int_a^b f dx$.
- 8. Suppose E and f are as in differentiable at x, $x \in E$, with $A = A_1$ and with $A = A_2$. Examine $A_1 = A_2$.

Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. Describe the class M is a σ -algebra.
- 10. Diagnose Fatou's Lemma.

- 11. Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Apply $f \in \wp'$ (E) if and only if the partial derivatives D_j f_i exist and are continuous on for $1 \le i \le m$, $1 \le j \le n$.
- 12. Appraise Parseval's Theorem.

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Justify the Stone-Weierstrass Theorem.
