SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. - END SEMESTER EXAMINATIONS APRIL - 2022

SEMESTER - I

08PPHCT1001 - Mathematical Physics

Total Duration : 3 Hrs.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. Show that the vectors (1,2,-3),(1,3,-2) and (2,-1,5) are linearly independent

2. Prove that
$$\mathsf{P}_2m(\mathsf{0}) = (\mathsf{-1})^m \; rac{2m!}{2^{2m}2m!^2}$$

- 3. Determine the analytic function whose real part is $x^3-3xy^2+3x^2+1$
- 4. Find the fourier series of the function ex in the interval $-\pi < x > \pi$.
- 5. Explain the construction of C_{4V} character table

6. S.T. (i)
$$H_2n(0) = (-1)\frac{n^{2n!}}{n!}$$
 (ii) $H_{2n+1}(0) = 0$

7. Find the residue of
$$\frac{Ze^{iz}}{a^4 + z^4}$$
 at its poles

8. Find the Laplace transform of the sawtooth wave function $f(t) = \frac{at}{T} 0 < t > T$ and f(t+T)=f(t)

Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. Explain Schmidt orthogonalization method
- 10. Show that $\int_{-1}^{+1} \mathsf{P}_m(\mathsf{x}) \mathsf{P}_n(\mathsf{x}) \mathsf{d}\mathsf{x} = \frac{2}{2n+1} \delta_{mn}$

11. Apply calculus of residues to show that $\int_0^\infty \frac{dx}{(x^2+1)(x^2+4)} = \frac{\pi}{24}$

12. Explain great orthogonality theorem

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Show that a periodic function f(x) can be expressed as Fourier series. Derive the expression for coefficients a_0, a_n, b_n
