SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC)

Affiliated to the University of Madras and Re-accredited with $A+^{2}$ Grade by NAAC) Chromepet, Chennai — 600 044.

M.Sc. - END SEMESTER EXAMINATIONS APRIL - 2022 SEMESTER - II

20PPHCT2007 - Computational Methods and C Programming

Total Duration : 3 Hrs.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Find the zero of the function $f(x) = x^3 2x^2 + x 3$ with $x_0 = 4$ by Newton Raphson-method up to three iterations.
- 2. Using Gauss-Jordan method solve x+y+z = 2; x-y+z = 4; 2x-2y+z = 6.
- 3. Fit a straight line for the given data by least square refinement.

x	0.5	1.0	1.5	2.0	2.5	3.0
у	0.31	0.82	1.29	1.85	2.51	3.02

- 4. Approximate the integral $\int_2^5 \frac{1}{x} dx$ using trapezoidal rule for 6 sub intervals.
- 5. Explain data-types in C with examples.
- 6. Find f(3) for the data f(1)=1, f(2)=4, f(5)=10 using Lagrange interpolation.
- 7. Use Gauss-Jacobi method to find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$
- 8. Explain executable and non-executable statements in C language with example.

Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. Find the solution that lies between 2 and 3 for, $x log_{10}^x = 1.2$, correct to three decimal places using bisection method.
- 10. Apply Gauss elimination method to find the solution of the following system. 2x + y + z = 7; x - y + z = 0; 4x + 2y - 3z = 4.
- 11. Following data gives the temperature in oC between 8.00 AM and 8.00 PM on a particular day in Chennai. Using Newton's backward interpolating formula to compute the temperature in Chennai on that day at 5.00 PM.

Time (Hrs)	8.00	12.00	16.00	20.00
Temp. (°C)	30	37	40	38

12. Using Runge - Kutta of fourth order solve, $\frac{dy}{dx} = (x+y) \sin xy$, y(0) = 5, at $0 \le x \le 2$ with steps h = 0.2.

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Write a program in C language for Simpson's rules.
