SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re accredited with 'A+' Grade by NAAC)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

B.Sc. END SEMESTER EXAMINATIONS APRIL-2022

SEMESTER - V

17UMACT5A10 & UMA/CT/5A10 - Real Analysis

Total Duration : 3 Hrs.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Prove that countable union of countable set is countable.
- 2. If (S_n) is a Cauchy sequence of real numbers, then prove that (S_n) is convergent.
- 3. Let (M,ρ) be metric space and let 'a' be a point in M.Let f and g be a real valued functions, whose domains are subset of M.If $\underset{x \to a}{Lt} f(x) = L$ and $\underset{x \to a}{Lt} g(x) = N$ then prove that $\underset{x \to a}{\lim} [f(x)g(x)] = LN$
- 4. If the subset A of the metric space (M, ρ) is totally bounded, then prove that A is bounded.
- 5. State and prove Rolle's theorem.
- 6. State and prove Ratio test for series.
- 7. State and prove Picard fixed point theorem.
- 8. Prove that every absolutely convergent series is convergent

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. Prove that a non decreasing sequence which is bounded above is convergent. Hence, deduce that the sequence $\left[(1+\frac{1}{n})^n\right]_{n=1}^{\infty}$ is convergent.
- 10. If $(a_n)_{n=1}^{\infty}$ is a sequence of positive numbers such that

 $1.a_1 \ge a_2 \ge \ge a_n \ge a_{n+1} \ge$ and.

- 2. $\lim_{n \to N} a_n = 0$. Then prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1}$ is convergent.
- 11. Let (M,ρ_1) and (M,ρ_2) be a metric space and let $f: M_2 \to M_2$. Prove that f is continuous if and only if the inverse image of every open set is open.
- 12. Prove that the subset of A of R¹ is connected if and only if whenever $a \in A$, $b \in A$ with $a \leq b$ then $c \in A$ or any c such that $a \leq c \leq b$.
- 13. State and prove second fundamental theorem of calculus.
