SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

B.Sc. END SEMESTER EXAMINATIONS APRIL-2022

SEMESTER - IV

20UMACT4007 - Vector Calculus and Fourier Transforms

Total Duration : 3 Hrs.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Find the directional derivative of xyz $xy^2 z^3$ at the point (1,2,-1) in the direction of the vector \hat{i} \hat{j} $3\hat{k}$.
- 2. If $\overrightarrow{F} = yz \overrightarrow{i} + zx \overrightarrow{j} xy \overrightarrow{k}$, find $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where C is given by x = t, $y = t^2$, $z = t^3$ from P(0,0,0) to Q(2,4,8).
- 3. Evaluate $\iiint_V \nabla \overrightarrow{F}$ dv if $\overrightarrow{F} = x^2 \overrightarrow{i} + y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$ and if V is the volume of the region enclosed by the cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.
- 4. Find the Fourier sine transform of $\frac{1}{x}$.
- 5. Use Parseval's identity to show that $\int_{0}^{\infty} \frac{1}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{2ab(a+b)}.$
- 6. Find the angle between the normal to the surface xy $z^2 = 0$ at the points (1,4,-2) and (-3,-3,3).
- 7. Define (i) Surface integral and (ii) Volume integral.
- 8. Find the Fourier sine and cosine transform of f(x) = x.

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. If $\overrightarrow{F} = xy^2 \overrightarrow{i} + 2x^2 yz \overrightarrow{j} 3yz^2 \overrightarrow{k}$ find div \overrightarrow{F} and curl \overrightarrow{F} . What are these values at the point (1,-1,1)?
- 10. Verify Green's theorem in the plane for $\oint (xy + y^2) dx + x^2 dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$.
- 11. Evaluate $\iint_{S} (x^{3}\overrightarrow{i} + y^{3}\overrightarrow{j} + z^{3}\overrightarrow{k}) \cdot \overrightarrow{n} dS$ where S is the surface of the sphere $x^{2} + y^{2} + z^{2} = 16$
- 12. Find the Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find the Fourier sine transform of $\frac{x}{1+x^2}$.

13. Find the Fourier transform of f(x) if $f(x) = \begin{cases} 1 & -|x||x| < 1 \\ 0 & |x| > 1 \end{cases}$ Hence find the value of $\int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt$.
