SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022 SEMESTER - I 20UCSAT1001 - Allied Mathematics - I

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$ 1. Sum the series $1 - \frac{3}{4} + \frac{35}{48} - \frac{357}{4812} + \dots$ 2. Show that the matrix $\frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix}$ is orthogonal 3. Show that $-2^5 \sin^6\theta = \cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10$ 4. Find $L \left[e^{-t} \cos^2 t \right]$ 5. Find the $L^{-1} \left(\log \left[\frac{s+1}{s-1} \right] \right)$ 6. Find the eigen value and corresponding eigen vector of the following matrix $\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$ 7. Express $\frac{\sin 7\theta}{\sin \theta}$ as a polynomial in $\cos \theta$ and $\sin \theta$

8. Find L $(t \sin 3t \cos 2t)$

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Show that
$$1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \dots = \frac{e(e^2-1)}{2}$$

10. State the Cayley - Hamilton theorem and verify it for the matrix $\begin{pmatrix} 1 & -1 & 2\\ -2 & 1 & 3\\ 3 & 2 & -3 \end{pmatrix}$

11. Express $\cos 6\theta$ as a polynomial in (1) $\cos \theta$ and (2) $\sin \theta$

12. Find
$$L\left[\frac{\sin^2 t}{t}\right]$$
 and $L\left[t\cos^3 t\right]$
13. Find $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$
