SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

B.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022

SEMESTER - V

20UCSET5001 - Resource Management Techniques

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. What are the characteristics of an O.R problem?
- 2. What is feasibility region in LP problem? Is it necessary that it should always be a convex set?
- 3. Solve the transportation problem:

		Т	ō		Supply
	1	2	3	4	6
From	4	3	2	0	8
	0	2	2	1	10
Demand	4	6	8	6	

4. Define an unbalanced assignment problem. Find the job assignment that will minimize the cost.

	1	2	3	4
Α	18	24	28	32
В	8	13	17	19
С	10	15	19	22

5. There are 7 jobs, each of which has to go through the machines A and B in the order AB. Processing times (in hours) are given as follows:

Job	1	2	3	4	5	6	7
M/c A	3	12	15	6	10	11	9
M/c B	8	10	10	6	12	1	3

Determine a sequence of these jobs that will minimise the total elapsed time. Also calculate the various idle times.

6. Solve by graphical method:

	B1	B2	B3
A1	4	-1	0
A2	-1	4	2

7. Draw the network for the project whose activities and their precedence relationships are as given below:

Activities	А	В	С	D	E	F	G	Н	1
Immediate									
Predecessors	-	A	А	-	D	B,C,E	F	E	G,H

8. For the following project, draw the network and find the critical path. Also calculate the earliest, latest and slack times for all events

Activity	1-2	2-3	2-4	2-5	3-5	4-6	5-7	6-7
Duration								
(in weeks)	5	8	7	5	2	9	6	3

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Find the non-negative values of $x_1 x_2$ and x_3 which

 $\begin{array}{l} Max \ z = 3x_1 + 2x_2 + 5x_3\\ subject \ to \ x_1 + 4x_2 \leq 420;\\ 3x_1 + 2x_3 \leq 460 \ ;\\ 2x_1 + 2x_2 + x_3 \leq 430. \end{array}$

10. Solve the transportation problem

	Destination									
		Α	В	С	D	Supply				
	1	11	20	7	8	50				
Source	2	21	16	20	12	40				
	3	8	12	18	9	70				
	Demand	30	25	35	40					

11. Determine the minimum time needed to process the two jobs on four machines m1,m2,m3,m4. The technological order for these jobs is as given below:

Job1	m1	m2	m3	m4
Job2	m4	m2	m1	m3

Processing time(hours) are as given below:

	m1	m2	m3	m4
Job1	5	7	8	4
Job2	5	8	6	9

SEMESTER - V 20UCSET5001 - Resource Management Techniques

12. Using the dominance property obtain the optimal strategies for both the players and determine thevalue of the game. The pay off matrix for player A is given below

	Player B								
		I	11		IV	V			
	I	2	4	3	8	4			
Player A	11	5	6	3	7	8			
		6	7	9	8	7			
	IV	4	2	8	4	3			

13. The data for a small project is given below:

Activity(i-j) days	Α	В	С	D	E	F
optimistic time	9	14	16	24	28	18
most likely time	10	20	20	30	36	20
pessimistic time	14	26	22	36	46	21

Precedence relationships: A,B can start immediately.

A< C,D; B < C,D ; C < E ; D, E < F.

Find the expected activity time and their variances. Calculate the earliest and latest expected time to reach node.
