SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc. - END SEMESTER EXAMINATIONS NOVEMBER-2022 SEMESTER - V 20UMACT5009 - Modern Algebra

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. A nonempty subset H of the group G is a subgroup of G if and only if 1. $a, b \in H$ implies that $ab \in H$. 2. $a \in H$ implies that $a - 1 \in H$.
- 2. Show that HK is a subgroup of G if and only if HK = KH.
- 3. Suppose G is a group, N a normal subgroup of G; define the mapping ϕ from G to G/ N by ϕ (x) = Nx for all x \in G. Then ϕ is a homomorphism of G onto G / N.
- 4. Explain that let G be a group and ϕ an automorphism of G. If $a \in G$ is of order o(a) > 0, then $o(\phi(a)) = o(a)$.
- 5. Prove that If ϕ is a homomorphism of R into R', then

1.
$$\phi(0) = 0$$
.
2. $\phi(-a) = -\phi(a)$ for every $a \in R$.

- 6. Discuss that If R is a ring, then for all a, $b \in \mathsf{R}$
 - 1. a0 = 0a = 0. 2. a(-b) = (-a) b = -(ab).
 - 3. (-a)(-b) = ab.
- 7. Show that If R is a commutative ring with unit element and M is an ideal of R, then M is a maximal ideal of R if and only if R/M is a field.
- 8. Prove that a Euclidean ring possesses a unit element.

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Prove that if H and K are finite subgroups of G of orders o(H) and o(K), respectively, then

 $O(\mathsf{HK}) = \frac{O(H)O(K)}{O(H \cap K)}$

Contd...

- 10. State and prove Cayley's theorem.
- 11. Explain that if 'p' is a prime number then Jp, the ring of integers mod p, is a field.
- 12. Prove that if 'U' is an ideal of the ring R, then ${\sf R}/{\sf U}$ is a ring and is a homomorphic image of R.
- 13. Explain that every integral domain can be imbedded in a field.

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc. - END SEMESTER EXAMINATIONS NOVEMBER-2022 SEMESTER - V 20UMACT5009 - Modern Algebra

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. A nonempty subset H of the group G is a subgroup of G if and only if 1. $a, b \in H$ implies that $ab \in H$. 2. $a \in H$ implies that $a - 1 \in H$.
- 2. Show that HK is a subgroup of G if and only if HK = KH.
- 3. Suppose G is a group, N a normal subgroup of G; define the mapping ϕ from G to G/ N by ϕ (x) = Nx for all x \in G. Then ϕ is a homomorphism of G onto G / N.
- 4. Explain that let G be a group and ϕ an automorphism of G. If $a \in G$ is of order o(a) > 0, then $o(\phi(a)) = o(a)$.
- 5. Prove that If ϕ is a homomorphism of R into R', then

1.
$$\phi(0) = 0$$
.
2. $\phi(-a) = -\phi(a)$ for every $a \in R$.

- 6. Discuss that If R is a ring, then for all a, $b \in \mathsf{R}$
 - 1. a0 = 0a = 0. 2. a(-b) = (-a) b = -(ab).
 - 3. (-a)(-b) = ab.
- 7. Show that If R is a commutative ring with unit element and M is an ideal of R, then M is a maximal ideal of R if and only if R/M is a field.
- 8. Prove that a Euclidean ring possesses a unit element.

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Prove that if H and K are finite subgroups of G of orders o(H) and o(K), respectively, then

 $O(\mathsf{HK}) = \frac{O(H)O(K)}{O(H \cap K)}$

Contd...

- 10. State and prove Cayley's theorem.
- 11. Explain that if 'p' is a prime number then Jp, the ring of integers mod p, is a field.
- 12. Prove that if 'U' is an ideal of the ring R, then ${\sf R}/{\sf U}$ is a ring and is a homomorphic image of R.
- 13. Explain that every integral domain can be imbedded in a field.
