SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

B.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022

SEMESTER - V

20UMAET5001 - Numerical Methods

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Use the method of iteration to solve the equation $3x \log_{10} x = 6$.
- 2. Find a positive root of $x e^x = 2$ by the method of false position.

3. Show that
$$\delta=\Delta\mathsf{E}^{-1/2}$$
 and $\mathsf{E}=\left(rac{\Delta}{\delta}
ight)^2$

- 4. State and Prove fundamental theorem for finite differences.
- 5. Compute a cubic polynomial which takes the following values

X	0	1	2	3
f(x)	1	2	1	10

6. Use Lagrange's interpolation formula to examine the value of y when x = 10, given the following data.

x	5	6	9	11
у	12	13	14	16

- 7. Solve $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2.
- 8. Use Runge Kutta method of the fourth order to determine y(0.1), given that $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1.

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. (i) Evaluate the order of convergence of the Newton Raphson method.(ii) Describe the algorithm for Bolzano method.
 - (II) Describe the algorithm for Dolzano method
- 10. Solve by Gauss Elimination method: $3x + 4y + 5z = 18, \ 2x y + 8z = 13, \ 5x 2y + 7z = 20 \ .$
- 11. Using Newton's divided difference formula evaluate f(8) given that

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

12. The population of a certain town is shown in the following table

Year x	1931	1941	1951	1961	1971
Population y	40.62	60.80	79.95	103.56	132.65

Compute the rate of the growth of population in 1961.

13. Given $\frac{dy}{dx} = \frac{1}{2}(1+x^2)y^2$ and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21 Evaluate y(0.4) by Milne's Predictor corrector method.

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

B.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022

SEMESTER - V

20UMAET5001 - Numerical Methods

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Use the method of iteration to solve the equation $3x \log_{10} x = 6$.
- 2. Find a positive root of $x e^x = 2$ by the method of false position.

3. Show that
$$\delta=\Delta\mathsf{E}^{-1/2}$$
 and $\mathsf{E}=\left(rac{\Delta}{\delta}
ight)^2$

- 4. State and Prove fundamental theorem for finite differences.
- 5. Compute a cubic polynomial which takes the following values

x	0	1	2	3
f(x)	1	2	1	10

6. Use Lagrange's interpolation formula to examine the value of y when x = 10, given the following data.

x	5	6	9	11
У	12	13	14	16

- 7. Solve $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2.
- 8. Use Runge Kutta method of the fourth order to determine y(0.1), given that $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1.

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. (i) Evaluate the order of convergence of the Newton Raphson method.(ii) Describe the algorithm for Bolzano method.
- 10. Solve by Gauss Elimination method: 3x + 4y + 5z = 18, 2x - y + 8z = 13, 5x - 2y + 7z = 20.
- 11. Using Newton's divided difference formula evaluate f(8) given that

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

12. The population of a certain town is shown in the following table

Year x	1931	1941	1951	1961	1971
Population y	40.62	60.80	79.95	103.56	132.65

Compute the rate of the growth of population in 1961.

13. Given $\frac{dy}{dx} = \frac{1}{2}(1+x^2)y^2$ and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21 Evaluate y(0.4) by Milne's Predictor corrector method.
