SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

B.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022 SEMESTER - IV

20UMACT4007 - Vector Calculus And Fourier Transforms

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Find the directional derivative of the function $x^2 yz + 4xz^2$ at the point (1,-2,-1) in the direction of the vector $2\overrightarrow{i} \overrightarrow{j} 2\overrightarrow{k}$.
- 2. If $\overrightarrow{F} = 3xy\overrightarrow{i} y^3\overrightarrow{j}$, Compute $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ along $y = 2x^2$ from (0,0) to (1,2).
- 3. Using Gauss divergence theorem, evaluate $\iint_{S} \overrightarrow{F} \cdot \hat{n}$ ds where $\overrightarrow{F} = 4xz\overrightarrow{i} - y^{2}\overrightarrow{j} + yz\overrightarrow{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 4. Derive a Fourier sine transform of the function $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$
- 5. State and prove change of scale property of Fourier cosine transform.
- 6. If $\overrightarrow{F} = xyz\overrightarrow{i} + xyz^2\overrightarrow{j} + x^2yz \overrightarrow{k}$, then find div(curl \overrightarrow{F}).
- 7. If $\overrightarrow{F} = (2x^2 3z)\overrightarrow{i} 2xy\overrightarrow{j} 4x\overrightarrow{k}$, then find $\iiint_V(\nabla, \overrightarrow{F}) \, dV$, where V is the region bounded by x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
- 8. State and prove shifting property of Fourier transform.

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. If $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$, Show that (i) $\nabla .r = \frac{\overrightarrow{r}}{r}$ (ii) $\nabla .r^n = nr^{n-2}\overrightarrow{r}$.
- 10. Check Green's theorem for $\int_C (xy + y^2)dx + x^2 dy$, Where C is the closed curve of the region bounded by the line y = x and $y = x^2$.

Contd...

- 11. Verify Stoke's theorem for $\overrightarrow{F} = (x^2 y^2)\overrightarrow{i} + 2xy\overrightarrow{j}$ taken over the rectangle bounded by x = 0, x = a, y = 0, y = b.
- 12. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, |x| < 1\\ 0, |x| \ge 1 \end{cases}$ and hence prove that $\int_{-\infty}^{\infty} \sin s s \cos s = s$, 3π

$$\int_0^\infty \frac{\sin s - \sin s}{s^3} \cos \frac{s}{2} ds = \frac{\sin s}{16}.$$

13. Using transform methods, evaluate $\int_0^\infty \frac{x^2}{(x^2+a^2)(x^2+b^2)} \, \mathrm{dx}.$

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044.

B.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022 SEMESTER - IV

20UMACT4007 - Vector Calculus And Fourier Transforms

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Find the directional derivative of the function $x^2 yz + 4xz^2$ at the point (1,-2,-1) in the direction of the vector $2\overrightarrow{i} \overrightarrow{j} 2\overrightarrow{k}$.
- 2. If $\overrightarrow{F} = 3xy\overrightarrow{i} y^3\overrightarrow{j}$, Compute $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ along $y = 2x^2$ from (0,0) to (1,2).
- 3. Using Gauss divergence theorem, evaluate $\iint_{S} \overrightarrow{F} \cdot \hat{n}$ ds where $\overrightarrow{F} = 4xz\overrightarrow{i} - y^{2}\overrightarrow{j} + yz\overrightarrow{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 4. Derive a Fourier sine transform of the function $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$
- 5. State and prove change of scale property of Fourier cosine transform.
- 6. If $\overrightarrow{F} = xyz\overrightarrow{i} + xyz^2\overrightarrow{j} + x^2yz \overrightarrow{k}$, then find div(curl \overrightarrow{F}).
- 7. If $\overrightarrow{F} = (2x^2 3z)\overrightarrow{i} 2xy\overrightarrow{j} 4x\overrightarrow{k}$, then find $\iiint_V(\nabla, \overrightarrow{F}) \, dV$, where V is the region bounded by x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
- 8. State and prove shifting property of Fourier transform.

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. If $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$, Show that (i) $\nabla .r = \frac{\overrightarrow{r}}{r}$ (ii) $\nabla .r^n = nr^{n-2}\overrightarrow{r}$.
- 10. Check Green's theorem for $\int_C (xy + y^2)dx + x^2 dy$, Where C is the closed curve of the region bounded by the line y = x and $y = x^2$.

Contd...

- 11. Verify Stoke's theorem for $\overrightarrow{F} = (x^2 y^2)\overrightarrow{i} + 2xy\overrightarrow{j}$ taken over the rectangle bounded by x = 0, x = a, y = 0, y = b.
- 12. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, |x| < 1\\ 0, |x| \ge 1 \end{cases}$ and hence prove that $\int_{-\infty}^{\infty} \sin s s \cos s = s$, 3π

$$\int_0^\infty \frac{\sin s - \sin s}{s^3} \cos \frac{s}{2} ds = \frac{\sin s}{16}.$$

13. Using transform methods, evaluate $\int_0^\infty \frac{x^2}{(x^2+a^2)(x^2+b^2)} \, \mathrm{dx}.$
