SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Maths) - END SEMESTER EXAMINATIONS APRIL-2023 SEMESTER - V 20UMACT5010 - Real Analysis

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Prove that a monotonic increasing sequence which is bounded above is Convergent sequence.
- 2. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.
- 3. If F_1 and F_2 are two closed subsets of the metric space M, then show that, $\mathsf{F}_1 \cup \mathsf{F}_2$ is also closed in M
- 4. Show that, a closed subset of a complete metric space is also complete.
- 5. Verify Rolle's theorem for the function $f(x) = \sqrt{1 x^2}$, $-1 \le x \le 1$.

6. Show that, the sequence $\left(1+\frac{1}{n}\right)^n$ converges.

- 7. Show that, if f is a continuous function from a metric space M_1 into a metric space M_2 and if M_1 is connected then the range of f is also connected.
- 8. State and prove the law of mean.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. Prove that, countable union of countable sets is also countable and hence show that, the set of rational numbers is countable.
- 10. Show that, a sequence $\{\mathbf{s}_n\}_{n=1}^{\infty}$ in R is convergent if and only if it is a Cauchy sequence.
- 11. Show that, if f is a function from a metric space M_1 into a metric space M_2 , then f is continuous on M_1 if and only if $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 .
- 12. Let < M, $\rho >$ be a complete metric space. If T is a contraction on M, then show that, there is one and only one point x in M such that Tx = x.
- 13. State and prove Fundamental theorem of calculus.
