SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Maths) - END SEMESTER EXAMINATIONS APRIL-2023 SEMESTER - VI 20UMACT6013 - Linear Algebra

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Show that if V is the internal direct sum of U_1, U_2, \dots, U_n then V is isomorphic to the external direct sum of U_1, U_2, \dots, U_n .
- 2. Prove that if $v_1, v_2, \ldots, v_n \in V$ are linearly independent, then every element in their linear span has a unique representation in the form $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_1 v_n$ with $\lambda_i \in F$
- 3. If V is finite dimensional over F and if $u_1, u_2, \ldots, u_m \in V$ are linearly independent, then we can find vectors u_{m+1}, \ldots, u_{m+r} in V such that $u_1, u_2, \ldots, u_m, u_{m+1}, \ldots, u_{m+r}$ is a basis of V,
- 4. Show that if dim $_{F}V = m$ then dim $_{F}Hom(V, F) = m$
- 5. Discriminate W^{\perp} is a subspace of V.
- 6. If V is a finite dimensional inner product space and if W is a subspace of V, then $V = W + W^{\perp}$. More particularly, V is the direct sum of W and W^{\perp} .
- 7. If V is a finite dimensional over F, then $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0.
- 8. If $W \subset V$ is invariant under T,then T induces a linear transformation \hat{T} on V/W, defined by $(v+W)\hat{T} = vT + W$, if T satisfies the polynomial $q(x) \in F[x]$,then so does \hat{T} . If $p_1(x)$ is the minimal polynomial for \hat{T} over F and if p(x) is that for $p_1(x)|p(x)$.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. If v_1, v_2, \ldots, v_n in V have W as linear span and if v_1, v_2, \ldots, v_k are linearly independent, then we can find a subset of v_1, v_2, \ldots, v_n of the form $v_1, v_2, \ldots, v_k, v_{i1}, v_{i2}, \ldots, v_{i,r}$ consisting of linear independent elements whose linear span is also W.

- 10. If V is finite dimensional and if W is a subspace of V, then Prove that W is finite dimensional, dim $W \le v$ and dim $V/W = \dim V \dim W$
- 11. State and prove Schwarz inequality
- 12. If $\lambda_1, \lambda_2, \dots, \lambda_k$ in F are distinct characteristic roots of $T \in A(V)$ and if v_1, v_2, \dots, v_k are characteristic vectors of T belonging to $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively then v_1, v_2, \dots, v_k are linearly dependent over F.
- 13. If V is n-dimensional over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis v_1, v_2, \ldots, v_n and the matrix $m_2(T)$ in the basis w_1, w_2, \ldots, w_n of V over F, then there is an element $C \in F_n$ such that $m_2(T) = Cm_1(T)C^{-1}$. In fact, if S is the linear transformation of V defined by $v_1S = w_i$ for $i = 1, 2, 3, \ldots n$ then C can be chosen to be $m_1(S)$.
