SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Physics) - END SEMESTER EXAMINATIONS APRIL-2023 SEMESTER - III 20UPHAT3003 - Allied Mathematics - I

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. Show that $\sqrt{x^2 + 16} - \sqrt{x^2 + 9} = \frac{7}{2x}$ nearly for sufficiently large value of x

2. Prove that the matrix $\frac{1}{2}\begin{bmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{bmatrix}$ is orthogonal

3. Prove that
$$\frac{sin7\theta}{sin\theta} = 64cos^{6}\theta - 80cos^{4}\theta + 24cos^{2}\theta - 1$$

4. Using Newton's Interpolation formula, find the value of y when x=27 from the following data

x	10	15	20	25	30
У	35.4	32.2	29.1	26	23.1

- 5. If $tan(\alpha + i\beta) = x + iy$ then prove that $x^2 + y^2 + 2xcost2\alpha = 1$
- 6. Find Eigen value and Eigen vector of $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$
- 7. Show that $\frac{1}{3!} + \frac{2}{5!} + \frac{3}{7!} + \frac{4}{9!} + \dots = \frac{1}{2e}$
- 8. Expand $\cos 6\theta$ as a polynomial in $\sin \theta$

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Find the sum infinity of the series
$$\frac{1}{24} - \frac{1.3}{24.32} + \frac{1.3.5}{24.32.40} - \dots$$

10. Verify Cayley-Hamilton theorem for A = $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Hence find A^{-1}

11. Prove that $32\cos^6\theta = \cos6\theta + 6\cos4\theta + 15\cos2\theta + 10$

12. Using Lagrange's Interpolation formula, find y(10), from the following table.

X	5	6	9	11
У	12	13	14	16

13. If sin(A + iB) = x + iy prove that

$$\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$$
$$\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$$
