SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Maths) - END SEMESTER EXAMINATIONS APRIL-2023 SEMESTER - V 21UMACT5009 - Modern Algebra

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. If H is a non empty finite subset of a group G and H is closed under multiplication, then show that H is a subgroup of G.
- 2. Prove that a finite integral domain is a field.
- 3. If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R/M is a field.
- 4. Let R be a_n Euclidean ring and a, $b \in R$. If $b \neq 0$ is not a unit in R, then show that d(a) < d(ab).
- 5. If ϕ is a homomorphism of G onto \overline{G} with kernel K, then prove that K is a normal subgroup of G.
- 6. Prove that the homomorphism Φ of R into R' is an isomorphism if and only if $I(\Phi) = (0)$.
- 7. State and Prove Lagrange's theorem.
- 8. Prove that Every Euclidean Ring is a Principal Ideal domain.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. If H and K are finite subgroups of G of order o(H) and o(K) respectively, then prove that $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$.
- 10. State and Prove Cayley's Theorem.
- 11. Let R, R' be rings and ϕ a homomorphism of R onto R' with kernel U. Then prove that R' is isomorphic to R/U.
- 12. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then prove that R is a field.
- 13. In an Euclidean ring R, prove that any two elements a and b in R have a greatest common divisor d. More over $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$.
