SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Stats) - END SEMESTER EXAMINATIONS APRIL-2023 SEMESTER - II 20USTCT2004 - Matrix Algebra

Total Duration : 2 Hrs 30 Mins.

10 1

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. Find X and Y if
$$2X + Y = \begin{pmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{pmatrix}$$
 and X - $2Y = \begin{pmatrix} -3 & 2 & 1 \\ 1 & -1 & 2 \end{pmatrix}$

2. If
$$A = \begin{pmatrix} 3 & 4 \\ 1 & 1 \\ 2 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix}$ find (AB)'. Hence verify (AB)'= B'A'.
3. Prove that $\begin{vmatrix} 0 & c & b \\ -c & 0 & a \\ -b & -a & 0 \end{vmatrix} = 0.$

- 4. Verify whether A = $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 2 \end{pmatrix}$ is singular
- 5. Investigate for the consistency of the following equations using elementary transformations.

$$4x - 2y + 6z = 8$$

 $x + y - 3z = -1$
 $15x - 3y + 9z = 21$

- 6. Write the properties of Eigen roots.
- 7. Write down the quadratic form corresponding to the matrix $A = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 0 & 3 \\ 5 & 3 & 4 \end{pmatrix}$
- 8. Define the following:
 - (i) Trace of the matrix
 - (ii) Symmetric matrix
 - (iii) Hermitian matrix.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} -3 & -2 \\ 1 & -5 \\ 4 & 3 \end{pmatrix}$ then find $D = \begin{pmatrix} p & q \\ r & s \\ t & u \end{pmatrix}$ so that
 $A + B - D = 0$
10. Show that $\begin{vmatrix} 1 & a & b + c \\ 1 & b & c + a \\ 1 & c & a + b \end{vmatrix} = 0$
11. Find the inverse of $A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$ using elementary transformations

12. Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$

13. Reduce $3x^2 + 3z^2 + 4xy + 8xz + 8yz$ into canonical form.
