17PAMCE1001

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with A+ Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATIONS NOVEMBER – 2022 SEMESTER – I **17PAMCE1001 – Probability and Distributions**

Total Duration: 2 Hrs 30 Mins.

Total Marks: 60

Section A

Answer any *SIX* questions (6 × 5 = 30 Marks)

- Suppose that an urn contains b white and c black balls, b -f c = N. A ball is drawn at random, and before drawing the next ball, 5 + 1 balls of the same color are added to the urn. The procedure is repeated n times. Let X be the number of white balls drawn in n draws, X = 0, 1, 2,..., n. Determine the PMF of X.
- 2. Let $X \sim C(\mu_1, \vartheta_1)$ and $Y \sim C(\mu_2, \vartheta_2)$ be independent Random variables. Then Prove that X+Y is a $C(\mu_1 + \mu_2, \vartheta_1 + \vartheta_2)$ Random variable.
- 3. An urn contains three red and two green balls. A random sample of two balls is drawn
 - (a) with replacement, and
 - (b) with out replacement. Let X = 0 if

the first ball drawn is green, = 1 if the first ball drawn is red, and let Y = 0 if the second ball drawn is green, = 1 if the second ball drawn is red. The joint PMF of (X, Y) is given in the following tables:

(a) Wit	th rep	lacen	nent	(b) With	(b) Without replacement			
$\sum X$	0	1		X	0	1		
Y				Y				
0	$\frac{4}{25}$	$\frac{6}{25}$	25	0	$\frac{2}{20}$	$\frac{6}{20}$	2 3	
1	$\frac{6}{25}$	$\frac{9}{25}$	35	1	$\frac{6}{20}$	$\frac{6}{20}$	$\frac{3}{5}$	
	<u>2</u> 5	35	1		2 5	35	1	

Determine its conditional PMFs and the conditional expectations.

4. Let (X, Y) be jointly distributed with density function

$$f(x, y) = \begin{cases} x + y, & 0 < x < 1, & 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Infer its Covariance and Correlation coefficient.

5. Derive MGF, Mean and Variance of Non-central Chi-Square distribution.

Contd...

- 6. Ascertain: $(n-1)S^2 / \sigma^2$ is $\chi^2(n-1)$
- 7. Prove that $X_n \xrightarrow{P} X$ implies $X_n \xrightarrow{L} X$
- 8. Establish an example to show that the convergence in distribution does not imply convergence of moments.

Section B Part A

Answer any TWO questions (2 × 10 = 20 Marks)

- 9. Define Gamma Distribution. Find MGF, Mean and Variance of Gamma Distribution. Illustrate few graphs of its PDFs.
- 10. Suppose that *r* balls are drawn one at a time without replacement from a bag containing *n* white and *m* black balls. Evaluate its Variance and Covariance.
- 11. Define Bivariate Normal Distribution. Prove that the functions defined in its definitions are a Joint PDF. Also Establish that the marginal PDFs of X and Y are, respectively, $N(\mu_1, \sigma_1^2) \& N(\mu_2, \sigma_2^2)$ and ρ is the correlation coefficient between X and Y.
- 12. Let $X_1, X_2, ..., X_n$ be the $N(\mu, \sigma^2)$ Random Variables. Then Prove that \overline{X} and $X_1 \overline{X}, X_2 \overline{X}, ..., X_n \overline{X}$ are independent.

Part B

Compulsory Question (1 × 10 = 10 Marks)

State and Deduce Lindeberg-Levy Central Limit Theorem along with its Converse part.

17PAMCE1001

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with A+ Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATIONS NOVEMBER – 2022 SEMESTER – I **17PAMCE1001 – Probability and Distributions**

Total Duration: 2 Hrs 30 Mins.

Total Marks: 60

Section A

Answer any *SIX* questions (6 × 5 = 30 Marks)

- 1. Suppose that an urn contains *b* white and *c* black balls, *b* -*f c* = *N*. *A* ball is drawn at random, and before drawing the next ball, 5 + 1 balls of the same color are added to the urn. The procedure is repeated *n* times. Let *X* be the number of white balls drawn in *n* draws, X = 0, 1, 2, ..., n. Determine the PMF of *X*.
- 2. Let $X \sim C(\mu_1, \vartheta_1)$ and $Y \sim C(\mu_2, \vartheta_2)$ be independent Random variables. Then Prove that X+Y is a $C(\mu_1 + \mu_2, \vartheta_{1+}, \vartheta_2)$ Random variable.
- 3. An urn contains three red and two green balls. A random sample of two balls is drawn
 - (a) with replacement, and
 - (b) with out replacement. Let X = 0 if

the first ball drawn is green, = 1 if the first ball drawn is red, and let Y = 0 if the second ball drawn is green, = 1 if the second ball drawn is red. The joint PMF of (X, Y) is given in the following tables:

(a) With replacement				(b) With	(b) Without replacement			
YX	0	1		Y X	0	1		
0	$\frac{4}{25}$	<u>6</u> 25	25	0	$\frac{2}{20}$	$\frac{6}{20}$	23	
1	$\frac{6}{25}$	$\frac{9}{25}$	35	1	$\frac{6}{20}$	$\frac{6}{20}$	<u>3</u> 5	
	2 5	35	1		2 5	35	1	

Determine its conditional PMFs and the conditional expectations.

4. Let (X, Y) be jointly distributed with density function

$$f(x, y) = \begin{cases} x + y, & 0 < x < 1, & 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Infer its Covariance and Correlation coefficient.

5. Derive MGF, Mean and Variance of Non-central Chi-Square distribution.

- 6. Ascertain: $(n-1)S^2 / \sigma^2$ is $\chi^2(n-1)$
- 7. Prove that $X_n \xrightarrow{P} X$ implies $X_n \xrightarrow{L} X$
- 8. Establish an example to show that the convergence in distribution does not imply convergence of moments.

Section B Part A

Answer any **TWO** questions (2 × 10 = 20 Marks)

- 9. Define Gamma Distribution. Find MGF, Mean and Variance of Gamma Distribution. Illustrate few graphs of its PDFs.
- 10. Suppose that r balls are drawn one at a time without replacement from a bag containing n white and m black balls. Evaluate its Variance and Covariance.
- 11. Define Bivariate Normal Distribution. Prove that the functions defined in its define tions are a Joint PDF. Also Establish that the marginal PDFs of X and Y are, respectively, $N(\mu_1, \sigma_1^2) \& N(\mu_2, \sigma_2^2)$ and ρ is the correlation coefficient between X and Y.
- 12. Let $X_1, X_2, ..., X_n$ be the $N(\mu, \sigma^2)$ Random Variables. Then Prove that \overline{X} and $X_1 \overline{X}, X_2 \overline{X}, ..., X_n \overline{X}$ are independent.

Part B

Compulsory Question (1 × 10 = 10 Marks)

13. State and Deduce Lindeberg-Levy Central Limit Theorem along with its Converse part.