SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. - END SEMESTER EXAMINATIONS NOVEMBER - 2022 SEMESTER - I 20PAMCT1002 - Real Analysis

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. (i) Define σ - algebra.

(ii) Define Lebesgue outer measure for subsets of real numbers.

- 2. Explain Uniform Convergence.
- 3. If X is a complete metric space, and if φ is a contraction of X into X, then there exists one and only $x \in X$ such that $\varphi(x) = x$.
- 4. Suppose $\sum c$ converges, put

$$f(x) = \sum_{n=0}^{\infty} c_n x^n \ (-1 < x < 1)$$

Then prove that

 ∞

$$\lim_{x \to 1} f(x) = \sum_{n=0} \mathsf{c}_n$$

- 5. State Fatou's Lemma and give an example
- 6. If K is compact, if $f_n \in C(K)$ and if $\{f_n\}$ is point wise bounded and equicontinuous on K, prove that $\{f_n\}$ is uniformly bounded on K.
- 7. State inverse function theorem.
- 8. If for some x there are constants

 $\delta > 0$ and $M < \infty$ such that $| f(x+t) - f(x) | \le M | t |$ For all $t \in (-\delta, \delta)$ then prove that $\lim_{N \to \infty} s_N(f : x) = f(x)$.

Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. (a) Let $\{E_i\}$ be a sequence of measurable sets . Then Prove that
 - (i) If $E_1 \subseteq E_2 \subseteq ...$, we have $m(\lim E_i) = \lim m(e_i)$
 - (ii) If $E_1 \supseteq E_2 \supseteq ...$, and $m(E_i) < \infty$ for each i, then we have $m(\lim E_i) = \lim m(E_i)$
 - (b)Prove that every interval is measurable.
- 10. If f is Riemann integrable and bounded over the finite interval [a,b] then Prove that f is integrable and $R\int_a^b f dx = \int_a^b f dx$
- 11. State and prove the Stone Weierstrass theorem.
- 12. State and prove the Implicit function theorem.

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. State and prove Bessel's inequality.

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. - END SEMESTER EXAMINATIONS NOVEMBER - 2022 SEMESTER - I 20PAMCT1002 - Real Analysis

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. (i) Define σ - algebra.

(ii) Define Lebesgue outer measure for subsets of real numbers.

- 2. Explain Uniform Convergence.
- 3. If X is a complete metric space, and if φ is a contraction of X into X, then there exists one and only $x \in X$ such that $\varphi(x) = x$.
- 4. Suppose $\sum c$ converges, put

$$f(x) = \sum_{n=0}^{\infty} c_n x^n \ (-1 < x < 1)$$

Then prove that

 ∞

$$\lim_{x \to 1} f(x) = \sum_{n=0} \mathsf{c}_n$$

- 5. State Fatou's Lemma and give an example
- 6. If K is compact, if $f_n \in C(K)$ and if $\{f_n\}$ is point wise bounded and equicontinuous on K, prove that $\{f_n\}$ is uniformly bounded on K.
- 7. State inverse function theorem.
- 8. If for some x there are constants

 $\delta > 0$ and $M < \infty$ such that $| f(x+t) - f(x) | \le M | t |$ For all $t \in (-\delta, \delta)$ then prove that $\lim_{N \to \infty} s_N(f : x) = f(x)$.

Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. (a) Let $\{E_i\}$ be a sequence of measurable sets . Then Prove that
 - (i) If $E_1 \subseteq E_2 \subseteq ...$, we have $m(\lim E_i) = \lim m(e_i)$
 - (ii) If $E_1 \supseteq E_2 \supseteq ...$, and $m(E_i) < \infty$ for each i, then we have $m(\lim E_i) = \lim m(E_i)$
 - (b)Prove that every interval is measurable.
- 10. If f is Riemann integrable and bounded over the finite interval [a,b] then Prove that f is integrable and $R\int_a^b f dx = \int_a^b f dx$
- 11. State and prove the Stone Weierstrass theorem.
- 12. State and prove the Implicit function theorem.

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. State and prove Bessel's inequality.
