SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022 SEMESTER - III 20PCHCT3007 - Organic Chemistry III

Total Duration : 2 Hrs 30 Mins.

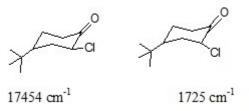
Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

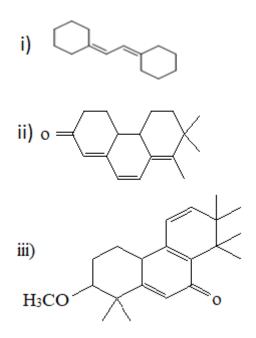
- 1. Calculate the approximate frequency of C-H stretching vibration from the following data: $k=5\times10^5$ g s⁻², mass of C atom = 20 x 10⁻²⁴ g s⁻², mass of H atom = 1.6 x 10⁻²⁴ g
- 2. Compare and contrast Raman and FT-IR spectroscopy.
- Apply Woodward Fieser rules and calculate the absorption for the following compounds.

- 4. NMR spectrum is simplified by spin-spin decoupling and nuclear over Hauser effect- Explain.
- 5. Illustrate with proper justification the expected chemical shifts for different carbons with the help of 13 C NMR.
- 6. Discuss in detail about 13 C NMR relaxation mechanisms.
- 7. Mass spectrum of a volatile organic liquid with fruity smell shows peaks at m/z 77, 105 and 136. Identify the fragments and propose the structure of the compound.
- 8. Examine Mc-Lafferty rearrangement by giving suitable examples.


Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$


9. Interpret the following

i) IR stretching frequencies of C=O bonds are different for the following compounds.

ii) lpha- halogenated benzoic acids show two carbonyl stretching frequencies.

10. Predict λ_{max} for the following compounds using Woodward Fieser rule.

- 11. Infer the factors affecting chemical shift in ${}^{13}C$ NMR spectroscopy.
- 12. Examine the general mode of fragmentation of esters.

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

- 13. A compound with molecular weight 116 gave the following spectral information:
 - (i) UV: 283 m $\mu \epsilon_{max}$ 22.
 - (ii) IR : 3000-2500 (b), 1715 (s), 1342 cm⁻¹ (w).
 - (iii) NMR : 7.88 τ Singlet (3H), 7.40 τ Triplet (2H), 7.75 τ Triplet (2H) and -1.1τ singlet (1H).

Determine the structural formula of the compound.

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022 SEMESTER - III 20PCHCT3007 - Organic Chemistry III

Total Duration : 2 Hrs 30 Mins.

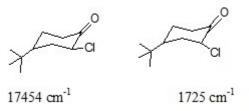
Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

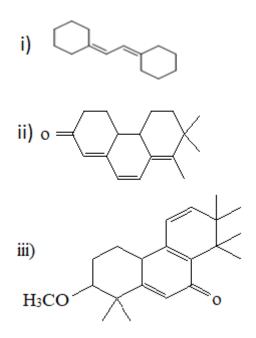
- 1. Calculate the approximate frequency of C-H stretching vibration from the following data: $k=5\times10^5$ g s⁻², mass of C atom = 20 x 10⁻²⁴ g s⁻², mass of H atom = 1.6 x 10⁻²⁴ g
- 2. Compare and contrast Raman and FT-IR spectroscopy.
- Apply Woodward Fieser rules and calculate the absorption for the following compounds.

- 4. NMR spectrum is simplified by spin-spin decoupling and nuclear over Hauser effect- Explain.
- 5. Illustrate with proper justification the expected chemical shifts for different carbons with the help of 13 C NMR.
- 6. Discuss in detail about 13 C NMR relaxation mechanisms.
- 7. Mass spectrum of a volatile organic liquid with fruity smell shows peaks at m/z 77, 105 and 136. Identify the fragments and propose the structure of the compound.
- 8. Examine Mc-Lafferty rearrangement by giving suitable examples.


Section B

Part A

Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$


9. Interpret the following

i) IR stretching frequencies of C=O bonds are different for the following compounds.

ii) lpha- halogenated benzoic acids show two carbonyl stretching frequencies.

10. Predict λ_{max} for the following compounds using Woodward Fieser rule.

- 11. Infer the factors affecting chemical shift in ${}^{13}C$ NMR spectroscopy.
- 12. Examine the general mode of fragmentation of esters.

Part B

Compulsory question $(1 \times 10 = 10 \text{ Marks})$

- 13. A compound with molecular weight 116 gave the following spectral information:
 - (i) UV: 283 m $\mu \epsilon_{max}$ 22.
 - (ii) IR : 3000-2500 (b), 1715 (s), 1342 cm⁻¹ (w).
 - (iii) NMR : 7.88 τ Singlet (3H), 7.40 τ Triplet (2H), 7.75 τ Triplet (2H) and -1.1τ singlet (1H).

Determine the structural formula of the compound.
