SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc.(App.Maths) - END SEMESTER EXAMINATIONS APRIL - 2023 SEMESTER - I **17PAMCE1001 - Probability and Distributions**

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Derive Banach's Matchbox problem.
- 2. The distribution function of F(x) = 0 if x < 0, F(x) < 1 if x > 0 and $\frac{1 - F(x + y)}{1 - F(y)} = 1 - F(x)$, for all x, y > 0. Then show that there exists a constant $\beta > 0$ such that $1 - F(x) = e^{-x\beta}$, for all x > 0.
- 3. If r balls are drawn one at a time without replacement from a bag containing n white and m black balls. If S_r denote the number of black balls drawn, then find the mean and variance of S_r .
- 4. Find the PMF of U = X+Y for the bivariate negative binomial distribution with PMF P(X=x,Y=y) = $\frac{(x+y+k-1)!}{x!y!(k-1)!} p_1^x p_2^y (1-p_1-p_2)^k$, where x,y = 0,1,2,...; k ≥ 1 .
- 5. Show that X has an n dimensional normal distribution if and only if every linear function of X has an univariate normal distribution.
- 6. If x_1, x_2, \dots, x_n are iid N(μ, σ^2) RVs and \bar{X} and S² are independent, then prove that E $\left\{ exp \left[(n-1) \frac{S^2}{\sigma^2} t \right] \right\} = (1-2t)^{-(n-1)/2}$, $t < \frac{1}{2}$.
- 7. Show that $X_n \xrightarrow{a.s} X$ if and only if $\lim_{n\to\infty} P\{\sup_{m\geq n} |X_m X| > \in \} = 0$, for all $\epsilon > 0$.
- 8. Show that $g(X_n) \xrightarrow{P} g(X)$ as $n \to \infty$ if $X_n \xrightarrow{P} X$ and g is continuous function defined on R.

Contd...

Section C

I - Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. If X ~ C(μ_1 , θ_1) and Y ~ C(μ_2 , θ_2) are independent random variables. Then show that X + Y is a C($\mu_1 + \mu_2$, $\theta_1 + \theta_2$) random variable.
- 10. Show that $M(t_1, t_2) = M(t_1, 0) M(0, t_2)$, for all $t_1, t_2 \in R$ if and only if X and Y are independent random variables.
- 11. If $(X_1, X_2, ..., X_n)$ be an n dimensional random variable with a normal distribution and $(Y_1, Y_2, ..., Y_k)$, $k \leq n$ is a linear functions of X_j (j = 1,2,3...,n). Then show that $(Y_1, Y_2, ..., Y_k)$ also has a multivariate normal distribution.
- 12. If $(X_1, X_2, ..., X_n)$ are identically independent distributed $N(\mu, \sigma^2)$ random variables. Then show that \overline{X} and $(X_1 \overline{X}, X_2 \overline{X}, ..., X_n \overline{X})$ are independent.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. State and prove Lindeberg – Levy Central Limit Theorem.
