SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc.(App.Maths) - END SEMESTER EXAMINATIONS APRIL - 2023 SEMESTER - I 22PAMET1001 Probability and Distributions

22PAMET1001 - Probability and Distributions

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. State and prove Bonferroni's Inequality.
- 2. Prove that if f is a nonnegative function satisfying

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$, then f is the joint density function of some random variable.

- 3. Let (X_1, X_2) have uniform distribution on the triangle $\{0 \le x_1 \le x_2 \le 1\}$; that is, (X_1, X_2) has joint density function $f(x_1, x_2) = \begin{cases} 2, & 0 \le x_1 \le x_2 \le 1\\ 0, & Elsewhere \end{cases}$ Find the density function of $X_1 + X_2$.
- 4. Let X₁,X₂ be independent random variables with common density given by $f(x) = \begin{cases} 1 & if0 < x < 1 \\ 0 & Otherwise \end{cases}$ Find the marginal PDF's of X₁ + X₂ and X₁ - X₂.
- 5. Explain Bivariate Binomial distributions.
- 6. Let X₁, X₂, ...,X_n be iid $N(\mu, \sigma^2)$ random variables. Then prove that \overline{X} and $(X_1 \overline{X}, X_2 \overline{X}, ..., X_n \overline{X})$ are independent.
- 7. Prove that the set of discontinuity points of a distribution function F is at most countable.
- Let (X₁, X₂, ...,X_n) be an n-dimensional random variable with a normal distribution. Let Y₁, Y₂, ...,Y_{k≤n}, be linear functions of X_j (j=1,2,3,...n). Then prove that (Y₁, Y₂, ...,Y_k) also has a multivariate normal distribution.

Section C

I - Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

9. If $X_1, X_2, ..., X_n$ are independent normal random variables and $\sum_{i=1}^n a_i b_i \operatorname{var}(X_i) = 0$, Then prove that $L_1 = \sum_{i=1}^n a_i X_i$ and $L_2 = \sum_{i=1}^n b_i X_i$ are independent. where $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ are fixed (nonzero) real numbers.

- 10. Prove that X be an random variable with standard normal PDF $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$
- 11. Explain Bivariate Poisson distributions.
- 12. State and prove Slutsky's theorem.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. State and prove Lindeberg-Levy Central Limit theorem.
