SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc.(App.Maths) - END SEMESTER EXAMINATIONS APRIL - 2023 SEMESTER - II 20PAMCT2004 - Algebra - II

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. If L is an algebraic extension of K and if K is an algebraic extension of F, then prove that L is an algebraic extension of F.
- 2. (i) Describe algebraic and transcendental numbers.
 - (ii) Show that , if L is a finite extension of F and K is a subfield of L which contains F, then [K :F] | [L :F].
- 3. State and prove Remainder Theorem.
- 4. Prove that if K is a normal extension of F, then K is the splitting field of some polynomial over F.
- 5. Prove that if V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, then T satisfies a polynomial of degree n over F.
- 6. Prove that if $T \in A(V)$ is nilpotent, then $\alpha_0 + \alpha_1 T + ... + \alpha_m T^m$, where the $\alpha_i \in F$, is invertible if $\alpha_0 \neq 0$.
- 7. Prove that $V_i \neq (0)$ and $V = V_1 \oplus V_2 \oplus ... \oplus V_k$, for each i = 1, 2, ..., k.
- 8. Define characteristic polynomial of T and prove that every linear transformation $T \in A_F(V)$ satisfies its characteristic polynomial and every characteristic root of T is a root of $P_T(x)$.

Section C

I - Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. Show that if F is of characteristic 0 and if a, b are algebraic over F, then there exists an element $c \in F(a, b)$ such that F(a, b) = F(c).
- 10. Prove if K is a finite extension of F, then G(K, F) is a finite group and its order, o(G(K, F)) satisfies $o(G(K, F)) \leq [K:F]$.
- 11. Prove that if $T \in A(V)$ has all its characteristic roots in F, then there is a basis of V in which the matrix of T is triangular.

Contd...

12. Show that the elements S and T in $A_F(V)$ are similar in $A_F(V)$ if and only if they have the same elementary divisors.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Prove that if L is a finite extension of K and if K is a finite extension of F, then L is a finite extension of F. Moreover, [L:F] = [L:K][K:F].
