SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc. END SEMESTER EXAMINATIONS NOVEMBER-2022 SEMESTER - I 22UAIAT1001 - Allied Mathematics - I

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section A

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. Find the sum of the series to infinity:

 $1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \dots$

- 2. Find the positive root of $f(x) = 2x^3 3x 6 = 0$ by Newton-Raphson method correct to five decimal places.
- 3. Using Cayley-Hamilton theorem, calculate A⁴ when A = $\begin{bmatrix} -1 & 3 \\ -1 & 4 \end{bmatrix}$.
- 4. Show that the matrix $A = \begin{bmatrix} -2 & 1 & 4 \\ 8 & -1 & 3 \\ 3 & -5 & 0 \end{bmatrix}$ can be written as the sum of symmetric matrix R and a skew symmetric matrix S, where $R = \frac{1}{2}(A + A^t)$ and $S = \frac{1}{2}(A A^t)$.
- 5. Diminish the roots of the equation x^4 $4x^3$ $7x^2 + 22x + 24 = 0$.
- 6. Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.
- 7. If $\cosh u = \sec \theta$, show that $u = \log \tan(\frac{\pi}{4} + \frac{\theta}{2})$.

8. Find
$$y_n$$
, where $y = \frac{x^2}{(x-1)^2(x+2)}$

Section B

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. (i) State the relation between E and Δ .
 - (ii) Using Lagrange's interpolation formula find y(10) from the following table:

x:	5	6	9	11
y:	12	13	14	16

- 10. Determine the eigenvalues and eigenvectors for the given matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 8 & 1 & 1 \end{bmatrix}$
- 11. Solve the equation $2x^5 15x^4 + 37x^3 37x^2 + 15x 2 = 0$.
- 12. Derive the expansion of $\tan n\theta$ in powers of $\tan \theta$.

13. (i) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, then find $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$. (ii) Prove that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$ is $4a \cos \frac{\theta}{2}$
