SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Maths) END SEMESTER EXAMINATIONS NOVEMBER -2023 SEMESTER - VI 08UMACT6013 - Linear Algebra

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Prove that Hom($F^{(n)}$, $F^{(m)}$) is isomorphic to $F^n(m)$ as a vector space.
- 2. Prove that L(S) is a subspace of V
- 3. If v_1 , v_2 , ..., v_n is a basis of V over F and if w_1 , w_2 , ..., w_m in V are linearly independent over F then prove that $m \le n$.
- 4. Define Inner product space and also prove that W^{\perp} is a subspace of V.
- 5. If A is an algebra, with unit element over a field F then show that A is isomorphic to a subalgebra of A(V) for some vector space V over F.
- 6. Define Characteristic root and prove that the element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if for some $v \neq 0$ in V, $vT = \lambda v$.
- 7. Prove that, given the matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{pmatrix} \in F_3$ (where the characteristic of F is not 2) then $A^3 6A^2 + 11A 6 = 0$.
- 8. If $T \in A(V)$ has all its characteristic roots in F then prove that there is a basis of V in which the matrix of T is triangular.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. If T is a homomorphism of U onto V with kernel W, then examine V is isomorphic to U/W. Conversely, if U is a vector space and W is a subspace of U, then show that there is a homomorphism of U onto U/W.
- 10. If V is finite dimensional and if W is a subspace of V, then prove that W is finite dimensional dim W \leq dim V and dim V/W = dim V dim W.

- 11. Let V be a finite dimensional inner product space then show that V has an orthonormal set as a basis.
- 12. If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
- 13. If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F then show that T satisfies a polynomial of degree n over F.
