SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Maths) END SEMESTER EXAMINATIONS NOVEMBER -2023 SEMESTER - III 20UMACT3005 - Differential Equations and Laplace Transforms

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Solve $x^2p^2 + 3xyp + 2y^2 = 0$.
- 2. Solve $(D^2 + 16) y = 2 e^{-3x} + \cos 4x$.
- 3. Solve yz (ax + y + z) dx + zx(x + ay + z) dy + xy(x + y + az) dz = 0.
- 4. Find the differential equation of all spheres whose centres lie on the z axis.
- 5. Solve $q = xp + p^2$.
- 6. Define Laplace transform with an example and write the sufficient conditions for the existence of the Laplace transform.
- 7. Find L($t^2 e^{-3t}$).
- 8. Find inverse Laplace transform of $\frac{1+2s}{(s+2)^2(s-1)^2}$

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. Solve $y = xp + x (1 + p^2)^{1/2}$.
- 10. Solve the following equation by the method of variation of parameters $\frac{d^2y}{dx^2} + y = secx.$
- 11. Determine (x² yz) p + (p² zx)q = z² xy.
- 12. Evaluate $\int_{0}^{\infty} te^{-3t} cost dt$.
- 13. Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 3y = sin3t$ given that $y = \frac{dy}{dt} = 0$ when t = 0 using Laplace Transforms

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Maths) END SEMESTER EXAMINATIONS NOVEMBER -2023 SEMESTER - III 20UMACT3005 - Differential Equations and Laplace Transforms

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Solve $x^2p^2 + 3xyp + 2y^2 = 0$.
- 2. Solve $(D^2 + 16) y = 2 e^{-3x} + \cos 4x$.
- 3. Solve yz (ax + y + z) dx + zx(x + ay + z) dy + xy(x + y + az) dz = 0.
- 4. Find the differential equation of all spheres whose centres lie on the z axis.
- 5. Solve $q = xp + p^2$.
- 6. Define Laplace transform with an example and write the sufficient conditions for the existence of the Laplace transform.
- 7. Find L($t^2 e^{-3t}$).
- 8. Find inverse Laplace transform of $\frac{1+2s}{(s+2)^2(s-1)^2}$

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. Solve $y = xp + x (1 + p^2)^{1/2}$.
- 10. Solve the following equation by the method of variation of parameters $\frac{d^2y}{dx^2} + y = secx.$
- 11. Determine (x² yz) p + (p² zx)q = z² xy.
- 12. Evaluate $\int_{0}^{\infty} te^{-3t} cost dt$.
- 13. Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 3y = sin3t$ given that $y = \frac{dy}{dt} = 0$ when t = 0 using Laplace Transforms
