SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(Statistics) END SEMESTER EXAMINATIONS NOVEMBER -2023 SEMESTER - IV **20USTAT4004 - Numerical Methods**

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Show that $\Delta^n = \nabla^n \mathsf{y}_{n+r}$
- 2. Use Lagrange's interpolation method to find the unique polynomial p(x) which agree with the data y(0) = 1, y(1) = 0 and y(3) = 10. Also find the value of y(2).
- 3. Derive Gauss forward interpolation formula.
- 4. Find a real root of the equation $f(x) = x^3 x 1 = 0$, using Bisection method.
- 5. Use Simpson's 1/3 rule to integrate f(x)= 0.2 + 25x + 3x² + 2x⁴ from a=0 to b=2
- 6. The distance of x from a runner from a fixed point is measured (in meters) at internals of half a second. The data obtained are

t	0.0	0.5	1.0	1.5	2.0
x	0.00	3.65	6.80	9.90	12.15

Use central differences to approximate the runner's velocity at times t=0.5s and t=1.25s.

- 7. Solve $x^4 x 7 = 0$ correct to two significant figures by Newton-Raphson's method correct upto 6 significant digits.
- 8. Use the trapezoid rule to estimate $\int_0^1 x^2 dx$ using four subintervals.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Using Newton's backward difference formula find the number of factories earning less than Rs.65,000 as profits from the following data are given below:

Profit (Rs.000)	30-40	40-50	50-60	60-70	70-80
No.of factories	34	43	56	39	29

10. Using Newton's divided difference formula, find the solution to x=5 using the given data

x	2	4	9	10
f(x)	4	56	711	980

- 11. Use Stirling's formula to find y_{28} given that y_{20} =49225, y_{25} =48316, y_{30} =47236, y_{35} =45926, y_{40} =44306.
- 12. Solve Equations 2x+y=8,x+2y=1 using Gauss Seidel method
- 13. Find the solution using Simpson's 3/8 rule

X	1.4	1.6	1.8	2.0	2.2
f(x)	4.0552	4.9530	6.0436	7.3891	9.025
