SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc.(Appl.Maths) END SEMESTER EXAMINATIONS NOVEMBER - 2023 SEMESTER - I 20PAMCT1001 - Algebra -1

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Define Normalizer N(a) and Prove that N(a) is Subgroup of G.
- 2. If o (G) = p^2 where p is prime number then prove that G is Abelian.
- 3. Suppose that G is the internal direct product of N_1 , N_2 ,... N_n then for $i \neq j$, $N_i \cap N_j =$ (e) and if a εN_i , b εN_j then prove that ab = ba.
- 4. If A is invertible then prove that det $(A) \neq 0$ and det $(A^{-1}) = (\det A)^{-1}$.
- 5. Prove that T ε A (V) is unitary iff TT* = 1.
- 6. Prove that every prime number p and every positive integer m there exists a field having p^m elements.
- 7. When a group is said to be Solvable. Given the group G and a, b ε G; verify that commutator of a and b is $a^{-1}b^{-1}$ ab.
- 8. Define norm of x. Prove that for all x, y ε Q,N (xy) = N (x) N (y).

Section C

I - Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. State and prove first Sylow's theorem.
- 10. Prove that G is solvable if and only if $G^{(k)} = (e)$ for some integer k.
- 11. For A, B ε F_n and $\lambda \varepsilon$ F Prove that (i) tr (λ A) = λ tr (A) (ii) tr (A + B) = tr (A) + tr (B) (iii) tr (AB) = tr (BA) (iv) if A is invertible then tr (ACA⁻¹) = tr (C).
- 12. Prove that if F is a field and α , $\beta \in F$; α , $\beta \neq 0$ then we can find two elements a, b in F such that $1 + \alpha a^2 + \beta b^2 = 0$.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Prove that the Adjoin in Q satisfies

(i) $x^{**} = x$; (ii) $(\alpha x + \beta y)^* = \alpha x^* + \beta y^*$; (iii) $(xy)^* = y^*x^*$ for all x, y in Q and all real α , β .

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc.(Appl.Maths) END SEMESTER EXAMINATIONS NOVEMBER - 2023 SEMESTER - I 20PAMCT1001 - Algebra -1

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Define Normalizer N(a) and Prove that N(a) is Subgroup of G.
- 2. If o (G) = p^2 where p is prime number then prove that G is Abelian.
- 3. Suppose that G is the internal direct product of N_1 , N_2 ,... N_n then for $i \neq j$, $N_i \cap N_j =$ (e) and if a εN_i , b εN_j then prove that ab = ba.
- 4. If A is invertible then prove that det $(A) \neq 0$ and det $(A^{-1}) = (\det A)^{-1}$.
- 5. Prove that T ε A (V) is unitary iff TT* = 1.
- 6. Prove that every prime number p and every positive integer m there exists a field having p^m elements.
- 7. When a group is said to be Solvable. Given the group G and a, b ε G; verify that commutator of a and b is $a^{-1}b^{-1}$ ab.
- 8. Define norm of x. Prove that for all x, y ε Q,N (xy) = N (x) N (y).

Section C

I - Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$

- 9. State and prove first Sylow's theorem.
- 10. Prove that G is solvable if and only if $G^{(k)} = (e)$ for some integer k.
- 11. For A, B ε F_n and $\lambda \varepsilon$ F Prove that (i) tr (λ A) = λ tr (A) (ii) tr (A + B) = tr (A) + tr (B) (iii) tr (AB) = tr (BA) (iv) if A is invertible then tr (ACA⁻¹) = tr (C).
- 12. Prove that if F is a field and α , $\beta \in F$; α , $\beta \neq 0$ then we can find two elements a, b in F such that $1 + \alpha a^2 + \beta b^2 = 0$.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Prove that the Adjoin in Q satisfies

(i) $x^{**} = x$; (ii) $(\alpha x + \beta y)^* = \alpha x^* + \beta y^*$; (iii) $(xy)^* = y^*x^*$ for all x, y in Q and all real α , β .
