SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc.(Appl.Maths) END SEMESTER EXAMINATIONS NOVEMBER - 2023 SEMESTER - I

20PAMCT1002 - Real Analysis

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Prove that the class \mathfrak{m} is a σ -algebra.
- 2. Prove that Not every measurable set is a Borel set.
- 3. State and prove Lebesgue's Dominated Convergence Theorem.

4. Show that if
$$\alpha > 1$$
, $\int_{0}^{1} \frac{xsinx}{1+(nx)^{\alpha}} dx = 0(n^{-1})$ as $n \to \infty$.

- 5. State and prove Cauchy criterion for uniform convergence.
- 6. Prove that suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such $\{f_n(x_0)\}$ that converges uniformly on [a,b], to a function f, and then $f'(x) = \lim_{n \to \infty} f'_n(x), (a \le x \le b)$.
- Prove that suppose fmaps an open set E ⊂ Rⁿ into R^m. Then f ∈ b['](E) if and only if the partial derivatives D_jf_i exist and are continuous on E for 1 ≤ i ≤ m,1 ≤ j ≤ n.
- 8. State and prove Stirling's formula.

Section c

- I Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$
- 9. Prove that let c be any real number and let **f** and **g** be real-valued measurable functions defined on the same measurable set E. Then **f+c**, **cf**, **f+g**, **f-g** and **fg** are also measurable.
- 10. State and prove the Stone-Weierstrass theorem.
- 11. State and prove Inverse function theorem.
- 12. State and prove Parseval's theorem.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. State and prove Fatou's Lemma.

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. M.Sc.(Appl.Maths) END SEMESTER EXAMINATIONS NOVEMBER - 2023 SEMESTER - I

20PAMCT1002 - Real Analysis

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Prove that the class \mathfrak{m} is a σ -algebra.
- 2. Prove that Not every measurable set is a Borel set.
- 3. State and prove Lebesgue's Dominated Convergence Theorem.

4. Show that if
$$\alpha > 1$$
, $\int_{0}^{1} \frac{xsinx}{1+(nx)^{\alpha}} dx = 0(n^{-1})$ as $n \to \infty$.

- 5. State and prove Cauchy criterion for uniform convergence.
- 6. Prove that suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such $\{f_n(x_0)\}$ that converges uniformly on [a,b], to a function f, and then $f^{'}(x) = \lim_{n o \infty} f^{'}_n(x)$, $(a \le x \le b)$.
- 7. Prove that suppose **f**maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then $\mathbf{f} \in b'(E)$ if and only if the partial derivatives $D_i f_i$ exist and are continuous on E for $1 \leq i \leq m, 1 \leq j \leq n$.
- 8. State and prove Stirling's formula.

Section c

- I Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$
- 9. Prove that let c be any real number and let \mathbf{f} and \mathbf{g} be real-valued measurable functions defined on the same measurable set E. Then **f+c**, **cf**, **f+g**, **f-g** and **fg** are also measurable.
- 10. State and prove the Stone-Weierstrass theorem.
- 11. State and prove Inverse function theorem.
- 12. State and prove Parseval's theorem.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. State and prove Fatou's Lemma.
