SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai — 600 044. B.Sc.(CGS) - END SEMESTER EXAMINATIONS NOVEMBER -2023 SEMESTER - III **21UCGAT3003 - Operations Research**

Total Duration : 2 Hrs 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. Solve the L.P.P by using Graphical Method,

 $\begin{array}{l} \text{Max } z = 2x_1 + 3x_2\\ \text{Subject to } x_1 - x_2 \leq 2,\\ x_1 + x_2 \geq 4\\ \text{and } x_1, x_2 \geq 0 \end{array}$

- 2. A company produces refrigerators in Unit I and heaters in Unit II. The two products are produced and sold on a weekly basis. The weekly production cannot exceed 25 in Unit I and 36 in Unit II, due to constraints 60 workers are employed. A refrigerator requires 2 man-week of labour, while a heater requires 1 man-week of labour. The profit available is Rs.600 per refrigerator and Rs.400 per heater. Formulate this as LPP.
- 3. Find the Starting Solution of the following Transportation Model using
 - (i) North West Corner Rule (ii) Least Cost Method
 - (iii) Vogel's Approximation Method

1	2	6	7
0	4	2	12
3	1	5	11
10	10	10	,

4. Solve the Transportation Problem with unit Transportation Costs, Demands and Supplies as given below:

Destination								
		D1	\mathbf{D}_2	D_3	\mathbf{D}_4	Supply		
	S ₁	6	1	9	3	70		
Source	S_2	11	5	2	8	55		
	S_3	10	12	4	7	70		
	Demand	85	35	50	45			

5. Find the sequence that minimises the total elapsed time required to complete the following tasks on the machine in the order 1-2-3. Find also the minimum total elapsed time (hours) and the idle time on the machine.

TaskTime on	A	В	С	D	E	F	G
Machine 1	3	8	7	4	9	8	7
Machine 2	4	3	2	5	1	4	3
Machine 3	6	7	5	11	5	6	12

- 6. Using Graphical Method, solve the Rectangular Game whose payoff matrix for player A is $\begin{pmatrix} 2 & -1 & 5 & -2 & 6 \\ -2 & 4 & -3 & 1 & 0 \end{pmatrix}$
- 7. Solve using Dominance property

В									
		I			IV				
Α	1	-5	3	1	20				
A	2	5	5	4	6				
	3	-4	-2	0	-5				

8. A project schedule has the following characteristics:

Activity	1-2	1-3	2-4	3-4	3-5	4-9
Time	4	1	1	1	6	5
Activity	5-6	5-7	6-8	7-8	8-10	9-10
Time	4	8	1	2	5	7

Construct PERT network and find the critical path

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Apply the Simplex Method to solve the problem.

 $\begin{array}{l} \mathsf{Max}\ z = \mathsf{100} x_1 + \mathsf{200} x_2 + \mathsf{50} x_3\\ \mathsf{Subject}\ \mathsf{to}\ \mathsf{5} x_1 + \mathsf{5} x_2 + \mathsf{10} x_3 \leq \mathsf{1000}\\ \mathsf{10} x_1 + \mathsf{8} x_2 + \mathsf{5} x_3 \leq \mathsf{2000}\\ \mathsf{10} x_1 + \mathsf{5} x_2 \leq \mathsf{500}\\ x_1, x_2, x_3 \geq \mathsf{0} \end{array}$

10. Solve the following Travelling Salesman Problem so as to minimize cost per cycle:

To City										
	1	2	3	4	5					
1	-	10	25	25	10					
2	1	-	10	15	2					
3	8	9	-	20	10					
4	14	10	24	-	15					
5	10	8	25	27	-					

Contd...

11. Solve the following Sequencing Problem giving an optimal solution if passing is not allowed.

Machine									
		\mathbf{M}_1	M_2	M_3	M_4				
	Α	13	8	7	14				
Jobs	В	12	6	8	19				
	С	9	7	8	15				
	D	8	5	6	15				

- 12. A and B play a game in which each has three coins, a 5p, a 10p and 20p. Each selects a coin without the knowledge of the other's choice. If the sum of the coins is an odd amount, A wins B's coin, If the sum is even B wins A's coin. Find the best strategy for each player and the value of the game.
- 13. Calculate the Earliest Start, Earliest Finish, Latest Start and Latest Finish of each activity of the project given below and determine the critical path of the project.

Activity	1-2	1-3	1-5	2-3	2-4
Duration (in weeks)	8	7	12	4	10
Activity	3-4	3-5	3-6	4-6	5-6
Duration (in weeks)	3	5	10	7	4
