SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044. B.Sc. Maths - END SEMESTER EXAMINATIONS APRIL - 2024 SEMESTER - VI 08UMACT6013 -Linear Algebra

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. a) Define Homomorphism. b) Show that L(S) is a subspace of V.
- 2. a) Define Linearly dependent over F.
 b) If v₁,v₂,...,v_n ε V are linearly independent, then show that every element in their linear span has a unique representation in the form λ₁v₁ + λ₂v₂+... + λ_nv_n with the λ_i ε F.
- 3. Prove that $F^{(n)}$ is isomorphic $F^{(m)}$ if and only if n = m.
- 4. Suppose that V is a finite-dimensional inner product space and W is a subspace of V, then prove that (W \perp) \perp = W.
- 5. a) Define Algebra over F.
 b) Prove that if V is a finite-dimensional over F, then T ∈ A(V) is singular if and only if there exists a v≠0 in V such that vT = 0.
- 6. a) Define Characteristic root.

b) If $\lambda \in F$ is a characteristic root of T ϵ A(V), then for any polynomial q(x) ϵ F[x], prove that q(λ) is a characteristic root of q(T).

- 7. Suppose that V is a n-dimensional over F and if T ϵ A(V) has the matrix m₁(T) in the basis v₁,v₂,...,v_n and the matrix m₂(T) in the basis w₁,w₂,...,w_n of V over F, then show that there is an element C ϵ F_n such that m₂(T) = C m₁(T) C⁻¹.
- 8. If u, $\nu \in V$ and $\alpha_1 \beta \in F$, then show that $(\alpha u + \beta v, \alpha u \epsilon \beta v = \alpha \overline{\alpha} (u,u) + \alpha \overline{\alpha} (u,u) + \alpha \overline{\beta} (u,v) + \overline{\alpha} \beta (v,u) + \beta \overline{\beta} (v,v)$

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

- 9. a) Define Vector Space.
 - b) If V is the internal direct sum of U_1, U_2, \ldots, U_n , then prove that V is isomorphic to the external direct sum of U_1, U_2, \ldots, U_n .

Contd...

- 10. Suppose that V and W are of dimensions m and n, respectively, over F, then prove that Hom(V,W) is of dimension *mn* over F.
- 11. a) Define Inner product space. b) If u,v ϵ V, then prove that $|(u, v)| \le |u||v|$.
- 12. Prove that if V is a finite-dimensional over F, then T ϵ A(V) is invertible if and only if the constant term of the minimal polynomial for T is not 0.
- 13. If T ϵ A(V) has all its characteristic roots in F, then show that there is a basis of V in which the matrix of T is triangular.
