SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044. B.Sc. Maths - END SEMESTER EXAMINATIONS APRIL - 2024 SEMESTER - VI 20UMACT6013 -Linear Algebra

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. If V is a vector space over F then prove that
 - (a) $\alpha 0 = 0$ for $\alpha \in F$
 - (b) ov = 0 for $v \in F$
 - (c) $(-\alpha)v = -(\alpha v)$ for $\alpha \in F, v \in V$.
 - (d) if $v \neq 0$, then $\alpha v = 0$ implies that $\alpha = 0$.
- 2. Examine whether L(S) is a subspaces of V. Interpret your result.
- 3. If $v_1, v_2, \ldots, v_n \in V$ are linearly independent, then determine that every element in their linear span has a unique representation in the form $\lambda_1 v_1 + \ldots + \lambda_n v_n$ with $\lambda_i \in F$.
- Let V be a finite-dimensional over F and if u₁, ..., u_m ∈ V are linearly independent, then construct vectors u_{m+1}, ..., u_{m+r} in V such that u₁, ..., u_m, u_{m+1}, ..., u_{m+r} is a basis of V.
- 5. If $u, v \in V$ and $\alpha, \beta \in F$, Demonstrate $(\alpha u + \beta v, \alpha u + \beta v) = \alpha \overline{\alpha} (u, u) + \alpha \overline{\beta} (u, v) + \overline{\alpha} \beta (v, u) + \beta \overline{\beta} (v, v)$.
- 6. Let $u, v \in V$ then simplify $|u, v| \leq ||u|| ||v||$.
- 7. Develop that A is isomorphic to a subalgebra of A (V) for some vector space V over F, if A is an algebra with unit element, over F.
- 8. The element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if for some $v \neq 0$ in V, $vT = \lambda v$. Justify the result.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. If T is a homomorphism of U onto V with kernel W, then prove that V is isomorphic to U/W. Conversely, if U is a vector space and W a subspace of U, categorize that then there is a homomorphism of U onto U/W.

- 10. Test whether W is finite-dimensional, if V is finite-dimensional and if W is a subspace of V. Also, Examine dim W \leq dim V and dim V/W = dim V dim W.
- 11. Let V be a finite-dimensional inner product space; then V has an orthonormal set as a basis.
- 12. Measure the linear transformation $T \in A(V)$ is regular if and only if T maps V onto V, if V is finite-dimensional over F.
- 13. Construct v_1, v_2, \ldots, v_k are linearly independent over F if $\lambda_1, \ldots, \lambda_k$ in F are distinct characteristic roots of $T \in A(V)$ and if v_1, v_2, \ldots, v_k are characteristic vectors of T belonging to $\lambda_1, \ldots, \lambda_k$ respectively.
