SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044. B.Sc. Maths - END SEMESTER EXAMINATIONS APRIL - 2024 SEMESTER - VI 22UMACT6015 - Operations Research

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Enumerate the applications of Operations Research.
- 2. A firm manufactures two types of products A and B and sells them at a profit of Rs.2 on type A and Rs.3 on type B. Each product is processed on two Machines M_1 and M_2 . Type A requires 1 minute of processing time on M_1 and two minutes on M_2 . Type B requires 1 minute of processing time on M_1 and one minute on M_2 . Machine M_1 is available for not more than 6 hours 40 minutes while Machine M_2 is available for 10 hours during any working day. Formulate the problem as a LPP so as to maximize the profit.
- 3. Define Slack variable and Surplus variable.
- 4. Express the following LPP in the canonical form:

Maximize $Z = 2x_1 + 3x_2 + x_3$ Subject to $4x_1 - 3x_2 + x_3 \le 6$ $x_1 + 5x_2 - 7x_3 \ge -4$ $x_1, x_3 \ge 0, x_2$ is unrestricted.

- 5. Explain the methods of solving two-phase method.
- 6. Solve the following transportation problem by North-West corner rule.

		Sink					
Origin		Α	B	С	D	Ε	Supply
	Ρ	2	11	10	3	7	4
	Q	1	4	7	2	1	8
	R	3	9	4	8	12	9
	Demand	3	3	4	5	6	

7. Solve the following transportation problem by Least Cost Method.

	То				Supply
From	1	2	1	4	30
TIOIII	3	3	2	1	50
	4	2	5	9	20
Demand	20	40	30	10	

Contd...

8. Solve the following Assignment problem.

	Operators					
		I			IV	
Machine	Α	10	5	13	15	
Machine	В	3	9	18	3	
	С	10	7	3	2	
	D	5	11	9	7	

Section C

Answer any **THREE** questions
$$(3 \times 10 = 30 \text{ Marks})$$

9. Use graphical method and solve:

 $\begin{array}{l} \text{Maximize } Z = 3x_1 + 4x_2 \\ \text{Subject to } x_1 + x_2 \leq 450 \\ 2x_1 + x_2 \leq 600 \\ x_1, x_2 \geq 0. \end{array}$

10. Use simplex method to solve the following LPP

 $\begin{array}{l} \text{Maximize } Z = 4x_1 + 10x_2 \\ \text{Subject to } 2x_1 + x_2 \leq 50 \\ 2x_1 + 5x_2 \leq 100 \\ 2x_1 + 3x_2 \leq 90 \\ x_1, x_2 \geq 0. \end{array}$

- 11. Use Big-M method to solve Minimize $Z = 4x_1 + 3x_2$ Subject to $2x_1 + x_2 \ge 10$ $-3x_1 + 2x_2 \le 6$ $x_1 + x_2 \ge 6$ $x_1, x_2 \ge 0$.
- 12. Compute the initial feasible solution using VAM and find the optimal solution of the transportation problem.

	То					
	7	3	2	2		
From	2	1	3	3		
	3	4	6	5		
	4	1	5			

13. Solve the following travelling salesman problem.

	То						
		Α	В	С	D		
From	Α	-	46	16	40		
From	В	41	-	50	40		
	С	82	32	-	60		
	D	40	40	36	-		