SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044. M.Sc. Appl. Maths - END SEMESTER EXAMINATIONS APRIL - 2024 SEMESTER - III **20PAMCT3007 - Complex Analysis**

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. State and prove Fundamental theorem of algebra.
- 2. If G is simply connected and f : $G \longrightarrow \mathfrak{C}$ is analytic in G then prove that f has a primitive in G.
- 3. State and prove Schwarz's lemma.
- 4. Prove that, If $|z| \leq 1$ and $p \geq 0$ then $|1 E_p(z)| \leq |z|^{P+1}$
- 5. State and prove Weierstrass factorization theorem.
- 6. Show that, If G is a bounded Dirichlet region then for each 'a' in G there is a Green's function on G with singularity at a.
- 7. Let f be an entire function of finite order λ where λ is not an integer; then prove that f has infinitely many zeros.
- 8. Prove that, If f is an entire function that omits two values then f is a constant.

Section C

- I Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$
- 9. If f has an isolated singularity at 'a' then prove that the point z = a is a removable singularity iff $\lim_{z \to a} (z a) f(z) = 0$
- 10. Let f be a function defined on $(0,\infty)$ such that f(x)>0 for all x>0. Suppose that f has the following properties:
 - (a) $\log f(x)$ is a convex function
 - (b) f(x+1) = xf(x) for all x
 - (c) f(1) = 1
 - Then $f(x) = \Gamma(x)$ for all x.
- 11. State and prove Harnack's theorem.

Contd...

12. For each α and β , $0 < \alpha < \infty$ and $0 \le \beta \le 1$, there is a constant $C(\alpha, \beta)$ such that if f is an analytic function on some simply connected region containing $\overline{B}(0;1)$ that omits the values 0 and 1, and such that $|f(0)| \le \alpha$; then $|f(z) \le C(\alpha, \beta)$ for $|z| \le \beta$.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. State and prove Morera's Theorem.
