SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044. M.Sc. Physics - END SEMESTER EXAMINATIONS APRIL - 2024 SEMESTER - II

22PPHCT2007 - Computational Methods and C Programming

Total Duration : 2 Hrs. 30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

1. Find the value of sin 52 using Newton's forward interpolation formula.

$ heta^\circ$	45°	50°	55°	60°
$\sin \theta$	0.7071	0.7660	0.8192	0.8660

- 2. Derive the truncation error in Trapezoidal rule.
- 3. Solve the following equation using Jacobi's iteration method.

$$20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25$$

- 4. Write a C program to find the real roots of a non linear equation using bisection method.
- 5. Obtain the condition for convergence of the Newton Raphson method.
- 6. Using the trapezoidal rule, find the area under the curve $y = x^2$ between x = 0 and x = 4 using the step size of 1.
- 7. Evaluate the following using Simpson's 1/3 rule:

X	0.0	0.1	0.2	0.3	0.4
f(x)	1.0000	0.9975	0.9900	0.9776	0.8604

8. Write a C program to solve a differential equation using Euler's method.

Section C

- I Answer any **TWO** questions $(2 \times 10 = 20 \text{ Marks})$
- 9. Using power method to find the dominant eigen value and eigen vector of

	1	1	3	
A =	1	5	1	
	3	1	1	

10. Solve the given system of equations using Gauss elimination method.

28x + 4y - z = 32x + 3y + 10z = 242x + 17y + 4z = 35

- 11. Evaluate $\sqrt{12}$ to four decimal places by Newton Raphson method.
- 12. Write a C program to obtain the solution of an equation using Simpson's 3/8 rule.

II - Compulsory question $(1 \times 10 = 10 \text{ Marks})$

13. Consider an ordinary differential equation $dy/dx = x^2 + y^2$ where y(1) = 1.2. Find y(1.05) using the fourth order Runge - Kutta method.
