SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044.

B.Sc.Computer Science - END SEMESTER EXAMINATIONS - NOV'2024

SEMESTER - II

20UCSAT2002 - Allied Mathematics - II

Total Duration : 2 Hrs.30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Find the positive root of $x^3 x = 1$ correct to 4 decimal places by bisection method.
- 2. Using Newton's forward difference formula, find f(43)

X	40	50	60	70	80	90
f(x)	184	204	226	250	276	304

3. Find a polynomial of degree four which takes the values

x:	2	4	6	8	10
y:	0	0	1	0	0

4. The population of a certain city is given below. Find $\frac{dy}{dx}$ at x = 1931

Year of Population x:	1931	1941	1951	1961	1971
In thousands y:	40.62	60.80	79.95	103.56	132.65

- 5. Solve $\frac{dy}{dx} = x + y$ given y(1) = 0 and get y(1.1) by Taylor series method.
- 6. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule with h=0.2. Hence, obtain an approximate value of π .
- 7. Solve the equation $\frac{dy}{dx} = -y$, y(0) = 1 and determine the value of y at x = 0.01 and 0.02 using Euler's method.
- 8. Find the positive root of $f(x) = 2x^3 3x 6 = 0$ by Newton Raphson method correct to five decimal places.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Solve for positive root of $x^3 - 4x + 1 = 0$ by Regula Falsi method.

Contd...

10. Find the value of y at x = 21 and x = 28, from the following data

X	20	23	26	29
у	0.3420	0.3907	0.4384	0.4848

11. Using Lagrange's Interpolation formula, find y(10), from the following table

x	5	6	9	11
У	12	13	14	16
		6		

- 12. Evaluate $I = \int_{0}^{6} \frac{1}{1+x} dx$ Using
 - (i) Trapezoidal rule (ii) Simpson's $1/3^{rd}$ rule
 - (iii) Simpson 3/8 rule. Also check up by direct integration,
- 13. Apply the fourth order Runge-Kulta method to find y(0.2) given that $y^\prime=x+y,\,y(0)=1$.
