SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044. B.Sc.Statistics - END SEMESTER EXAMINATIONS - NOV'2024 SEMESTER - IV 20USTCT4007 - Statistical Inference - I

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Let X_i ; i = 1,2,....,n follows Poisson distribution with parameter λ . Find the sufficient estimator for λ .
- 2. Prove that the sample mean is a consistent estimator of population mean when a random sample size of 'n' taken from N(μ , σ^2).
- 3. State and prove Rao-Blackwell Theorem.

Total Duration : 2 Hrs.30 Mins.

- 4. Let X_i ; i = 1,2,....,n follows Exponential distribution with parameter θ . Find the unbiased estimator for θ .
- 5. State the properties of Maximum likelihood estimators.
- 6. Obtain MVUE for μ in the normal population N(μ , σ^2) when σ^2 is known.
- 7. Obtain $100(1-\alpha)$ % confidence interval for the parameter μ of the Normal population.
- 8. Explain the test for significance of single proportion.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. A random sample X_i ; i = 1,2,3,4,5 is drawn from a Normal population with unknown mean μ . Consider the following estimators for μ

i)
$$t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$

ii) $t_2 = \frac{X_1 + X_2}{2} + X_3$
iii) $t_3 = \frac{2X_1 + X_2 + \lambda X_3}{3}$

Where λ is such that t_3 is an unbiased estimator.

Find λ .

Are t_1 and t_2 unbiased?

Which is best among t_1 , t_2 and t_3 ?

Contd...

- 10. State and prove Cramer Rao Inequality.
- 11. Let X_i ; i = 1,2,....,n follows Normal distribution with mean μ and Variance σ^2 . Find the MLE estimator for
 - i. μ when σ^2 is known
 - ii. σ^2 when μ is known
 - iii. When μ and σ^2 both are unknown.
- 12. Obtain $100(1-\alpha)$ % confidence interval for the difference between two population proportions of the Normal population.
- 13. a) Describe the independent sample t-test for means
 - b) Describe the test for independence of attributes
