SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044. B.Sc.CGS - END SEMESTER EXAMINATIONS - NOV'2024 SEMESTER - III 21UCGAT3003 - Operations Research

Total Duration : 2 Hrs.30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions $(6 \times 5 = 30 \text{ Marks})$

- 1. Solve Graphically: Maximize: Z = 8x + ySubject to $x + y \le 40$; $2x + y \le 60$; and $x \ge 0, y \ge 0$.
- 2. A factory manufactures two types of products S and T and sells them at a profit of \$2 on type S and \$3 on type T. Each product is processed on two machines M1 and M2. Type S requires 1 minute of processing time on M1 and 2 minutes on M2. Type T requires 1 minute on M1 and 1 minute on M2. Machine M1 is available for not more than 6 hours 40 minutes while machine M2 is available for 10 hours during any working day. Formulate the problem as an LPP so as to maximise the profit.
- 3. Using North West corner rule determines the basic feasible solution to the following transportation problem.

	Destination									
		А	В	С	D	Ε	Supply			
Source (Ρ	2	11	10	3	7	4			
	Q	1	4	7	2	1	8			
	R	3	9	4	8	12	9			
Demand		3	3	4	5	6				

4. Solve the following assignment problem

			Jc	b		
Persons		1	2	3	4	5
	Α	8	4	2	6	1
	В	0	9	5	5	4
	С	3	8	9	2	6
	D	4	3	1	0	3
	Е	9	5	8	9	5

Contd...

5. There are five jobs, each of which must go through the two machines A and B in the order AB. Processing times are given below: Processing time (hours)

Job	1	2	3	4	5
M1	3	8	5	7	4
M2	4	10	6	5	8

Determine the optimum sequence, minimum total elapsed time and idle time for the machines.

6. Using Dominance property solve the Game

	В							
Α	-5	3	1	20				
A	5	5	4	6				
	4	-2	0	-5				

7. Draw the network for the project whose activities and their precedence relationships are given below:

Activity	Α	В	С	D	E	F
Predecessor	-	-	-	А, В	A, C	B, C

8. Distinguish between CPM and PERT.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. Solve the following transportation to minimize the total cost of the transportation.

Origin	D	estii	Supply		
	14	56	48	27	70
	82	35	21	81	47
	99	31	71	63	93
Demand	70	35	45	60	210

10. Solve the following sequencing problem of 4 jobs and 6 machines (Processing time in hours)

Jobs	Machines										
	M1	M2	M3	M4	M5	M6					
A	19	8	8	3	11	24					
В	18	6	9	6	9	18					
С	12	5	8	5	7	15					
D	20	5	3	4	8	11					

11. Using Graphical method, solve the rectangular game whose payoff matrix for player A is $\begin{pmatrix} 2 & -1 & 5 & -2 & 6 \\ -2 & 4 & -3 & 1 & 0 \end{pmatrix}$.

Contd...

12. Calculate the total float free float and independent float for the project whose activities are given below:

Activity	1-2	1-3	1-5	2-3	2-4	3-4	3-5	3-6	4-6	5-6
Duration (in weeks)	8	7	12	4	10	3	5	10	7	4

13. Use the Simplex method to solve the (LP) model: Max Z = 4x1 - x2Subject to $x1 + 2x2 \le 4$; $2x1 + 3x2 \le 12$; $x1 - x2 \le 3$; and $x1, x2 \ge 0$.
