22UDSAT1001

SHRIMATHI DEVKUNVAR NANALAL BHATT VAISHNAV COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to the University of Madras and Re-accredited with 'A+' Grade by NAAC) Chromepet, Chennai - 600 044. B.Sc.DS - END SEMESTER EXAMINATIONS - NOV'2024 SEMESTER - I 22UDSAT1001 - Allied Mathematics - I

Total Duration : 2 Hrs.30 Mins.

Total Marks : 60

Section B

Answer any **SIX** questions
$$(6 \times 5 = 30 \text{ Marks})$$

1. Show that
$$\frac{1 + \frac{1}{2!} + \frac{2}{3!} + \frac{2^2}{4!} + \dots}{1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots} = \frac{e}{2}$$

2. Solve $x^4 + 2x^3 - 5x^2 + 6x + 2 = 0$, given that 1 + i is a root.

- 3. Show that $2^5 cos^6 \theta = cos 6\theta + 6cos 4\theta + 15cos 2\theta + 10$.
- 4. Find the maximum and minimum values of the function $f(x,y) = x^2y^2$ x^2 y^2 .
- 5. Show that the matrix $\frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$ is orthogonal.
- 6. Diminish the roots of the equation $x^4 4x^3 7x^2 + 22x + 24 = 0$ by 1 and hence solve the equation.
- 7. If $tan^{-1}(2-i) = x + iy$, then show that 4y = -log2.
- 8. Show that the radius of curvature at any point of the cardioids $r = a(1 + \cos\theta)$ is $\frac{4a}{3} \cos\frac{\theta}{2}$. Deduce that $\frac{\rho^2}{r}$ is a constant.

Section C

Answer any **THREE** questions $(3 \times 10 = 30 \text{ Marks})$

9. i) Given the following values for x and y

x	0	1	2	3	4	5		
У	3	12	81	200	100	8		

Find $\Delta^5 y_0$.

ii) Apply Newton's backward difference formula to find a polynomial of degree 3, for the following data

x	3	4	5	6
У	6	24	60	120

Contd...

- 10. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.
- 11. If the sum of the two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ is equal to the sum of the other two, then prove that $p^3 + 8r = 4pq$.
- 12. If sin(A + iB) = x + iy, then
 - i) show that $x = sinA \ coshB$, $x^2 \ y^2$

ii) show that
$$\frac{x^2}{Sin^2A} - \frac{y^2}{cos^2A} = 1$$
,
iii) show that $\frac{x^2}{cos^2A} + \frac{y^2}{cos^2A} = 1$

13. If
$$y = sin^{-1}x$$
, prove that

i)
$$(1 - x^2)y_2 - xy_1 = 0$$

ii) $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$.
